文藻外語大學W-Portfolio

研究資料首頁-> 期刊論文

研究資料明細

論文名稱 New C-fuzzy decision tree with classified points
發表日期 2008-12-01
論文收錄分類 SCI
所有作者 Shiueng Bien Yang
作者順序 第一作者
通訊作者
刊物名稱 Journal of Electronic Imaging
發表卷數 17
是否具有審稿制度
發表期數 4
期刊或學報出版地國別/地區 NATTWN-中華民國
發表年份 2008
發表月份 1
發表形式 電子期刊
所屬計劃案
可公開文檔  
可公開文檔  
可公開文檔   
附件 New C-fuzzy decision tree with classified points.pdfNew C-fuzzy decision tree with classified points.pdf


[英文摘要] :
The C-fuzzy decision tree (CFDT)–based on the fuzzy
C-means (FCM) algorithm has been proposed recently. In many experiments,
the CFDT performs better than the “standard” decision
tree, namely, the C4.5. A new C-fuzzy decision tree (NCFDT) is
proposed, and it outperforms the CFDT. Two design issues for
NCFDT are as follows. First, the growing method of NCFDT is
based on both classification error rate and the average number of
comparisons for the decision tree, whereas that of CFDT only addresses
classification error rate. Thus, the proposed NCFDT performs
better than the CFDT. Next, the classified point replaces the
cluster center to classify the input vector in the NCFDT. The
classified-points searching algorithm is proposed to search for one
classified point in each cluster. The classification error rate of the
NCFDT with classified points is smaller than that of CFDT with cluster
centers. Furthermore, these classified points can be applied to
the CFDT to reduce classification error rate. The performance of
NCFDT is compared to CFDT and other methods in experiments.

[參考文獻] :
1. J. R. Quinlan, “Induction of decision tree,” Mach. Learn. 1, 81–106
1986.
2. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Vlassification
and Regression Trees, Wadsworth, Belmont, CA 1984.
3. A. Dobra and M. Schlosser, “Non-linear decision trees-NDT,” in
Proc. 13th Int. Conf. Machine Learning (ICML’96), Bari, Italy, July
3–6 1996.
4. S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” J. Artif. Intell. Res. 2, 1–32 1994.
5. W. Pedrycz and Z. A. Sosnowski, “Designing decision trees with the
use of fuzzy granulation,” IEEE Trans. Syst. Man Cybern., Part A.
Syst. Humans 302, 151–159 2000.
6. R. Weber, “Fuzzy ID3: A class of methods for automatic knowledge
acquisition,” in Proc. 2nd Int. Conf. Fuzzy Logic Neural Networks,
pp. 265–268 1992.
7. S. B. Gelfand, C. S. Ravishankar, and E. J. Delp, “An iterative growing
and pruning algorithm for classification tree design,” IEEE Trans.
Pattern Anal. Mach. Intell. 132, 163–174 1991.
8. O. T. Yildiz and E. Alpaydin, “Omnivariate decision trees,” IEEE
Trans. Neural Netw. 126, 1539–1546 2001.
9. H. Zhao and S. Ram, “Constrained cascade generalization of decision
trees,” IEEE Trans. Knowl. Data Eng. 166, 727–739 2004.
10. M. M. Gonzalo and S. Alberto, “Using all data to generate decision
tree ensembles,” IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
344, 393–397 2004.
11. Y. Yuan and M. J. Shaw, “Introduction of fuzzy decision trees,” Fuzzy
Sets Syst. 69, 125–139 1995.
12. J. R. Quinlan, “Introduction of decision trees,” Mach. Learn. 1, 81–
106 1986.
13. H. Ichihashi, T. Shirai, K. Nagasaka, and T. Miyoshi, “Neuro-fuzzy
ID3,” Fuzzy Sets Syst. 81, 157–167 1996.
14. X. Wang, B. Chen, G. Qian, and F. Ye, “On the optimization of fuzzy
decision trees,” Fuzzy Sets Syst. 112, 117–125 2000.
15. X. Z. Wang, D. S. Yeung, and E. C. C. Tsang, “A comparative study
on heuristic algorithms for generating fuzzy decision trees,” IEEE
Trans. Syst., Man, Cybern., Part B: Cybern. 312, 215–226 2001.
16. W. Pedrycz and Z. A. Sosnowski, “Designing decision trees with the
use of fuzzy granulation,” IEEE Trans. Syst. Man Cybern., Part A.
Syst. Humans 302, 151–159 2000.
17. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function,
Plenum, New York 1981.
18. A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv. 313, 264–323 1999.
19. W. Pedrycz and Z. A. Sosnowski, “C-fuzzy decision trees,” IEEE
Trans. Syst. Man Cybern., Part C Appl. Rev. 354, 498–511 2005.
20. C. Merz and P. Murphy, UCI Repository of Machine Learning Databases,
Dept. of CIS, Univ. of California, Irvine, http://
www.ics.uci.edu/~mlearn/MLRepository.html 2006.
21. P. Borodatz, Textures—A Photographic Album for Artists and Designers,
Dover, New York 1966.
22. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-
Wesley, Boston 1992.