研究資料首頁-> 期刊論文
研究資料明細
論文名稱 | A genetic approach to the automatic clustering problem |
發表日期 | 2001-12-01 |
論文收錄分類 | SCI |
所有作者 | Lin Yu Tseng、Shiueng Bien Yang |
作者順序 | 第二作者 |
通訊作者 | 否 |
刊物名稱 | Pattern Recognition |
發表卷數 | 34 |
是否具有審稿制度 | 是 |
發表期數 | 2 |
期刊或學報出版地國別/地區 | NATTWN-中華民國 |
發表年份 | 2001 |
發表月份 | 12 |
發表形式 | 電子期刊 |
所屬計劃案 | 無 |
可公開文檔 | |
可公開文檔 | |
可公開文檔 | |
附件 | Agenetic03112411012727105.pdf |
[英文摘要] :
In solving the clustering problem, traditional methods, for example, the K-means algorithm and its variants, usually
ask the user to provide the number of clusters. Unfortunately, the number of clusters in general is unknown to the user.
Therefore, clustering becomes a tedious trial-and-error work and the clustering result is often not very promising
especially when the number of clusters is large and not easy to guess. In this paper, we propose a genetic algorithm for the
clustering problem. This algorithm is suitable for clustering the data with compact spherical clusters. It can be used in
two ways. One is the user-controlled clustering, where the user may control the result of clustering by varying the values
of the parameter, w. A small value of w results in a larger number of compact clusters, while a large value of w results in
a smaller number of looser clusters. The other is an automatic clustering, where a heuristic strategy is applied to "nd
a good clustering. Experimental results are given to illustrate the e!ectiveness of this genetic clustering algorithm.
( 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
[參考文獻] :
[1] M.R. Anderberg, Cluster Analysis for Applications, Academic
Press, New York, 1973.
[2] J.T. Tou, R.C. Gonzalez, Pattern Recognition Principles,
Addision-Wesley, Reading, MA, 1974.
L.Y. Tseng, S.B. Yang / Pattern Recognition 34 (2001) 415}424 423
[3] J.A. Hartigan, Clustering Algorithms, Wiley, New York,
1975.
[4] K.S. Fu, Communication and Cybernetics: Digital Pattern
Recognition, Springer, Berlin, 1980.
[5] R. Dubes, A.K. Jain, Clustering Methodology in
Exploratory Data Analysis, Academic Press, New York,
1980.
[6] P.A. Devijver, J. Kittler, Pattern Recognition } A Statistical
Approach, Prentice-Hall, London, 1982.
[7] S.Z. Selim, M.A. Ismail, K-means-type algorithm: generalized
convergence theorem and characterization of local
optimality, IEEE Trans. Pattern Anal. Mach. Intell.
6 (1984) 81}87.
[8] W.L. Koontz, P.M. Narendra, K. Fukunaga, A branch
and bound clustering algorithm, IEEE Trans. Comput.
c-24 (1975) 908}915.
[9] S.Z. Selim, K.S. Al-Sultan, A simulated annealing algorithm
for the clustering problem, Pattern Recognition 24
(1991) 1003}1008.
[10] R.W. Klein, R.C. Dubes, Experiments in projection and
clustering by simulated annealing, Pattern Recognition 22
(1989) 213}220.
[11] G.P. Babu, M.N. Murty, Clustering with evolution strategies,
Pattern Recognition 27 (1994) 321}329.
[12] R.F. Ling, A probability theory of cluster analysis, J. Amer.
Statist. Assoc. 68 (1973) 159}164.
[13] P.-Y. Yin, L.-H. Chen, A new non-iterative approach for
clustering, Pattern Recognition Lett. 15 (1994) 125}133.
[14] G.C. Osbourn, R.F. Martinez, Empirically de"ned regions
of in#uence for clustering analyses, Pattern Recognition 28
(1995) 1793}1806.
[15] P.S. Stephen, Threshold validity for mutual neighborhood
clustering, IEEE Trans. Pattern Anal. Mach. Intell. 15
(1993) 89}92.
[16] M. Srinivas, M. Patnaik, Genetic algorithm } A survey,
IEEE Computer 27 (1994) 17}26.
[17] C.A. Murthy, N. Chowdhury, In search of optimal clusters
using genetic algorithms, Pattern Recognition Lett. 17
(1996) 825}832.
[18] R. Dubes, A.K. Jain, Clustering techniques: the user's dilemma,
Pattern Recognition 8 (1976) 247}260.
[19] DARPA TIMIT Acoustic-Phonetic Continuous Speech
Corpus, National Institute of Standards and Technology
Speech Disc 1-1.1, 1990.