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ABSTRACT 

In this study, the constrained-storage variable-branch neural tree (CSVBNT) is proposed for 

pattern classification. In the CSVBNT, each internal node is designed as a single layer neural network 

(SLNN) that is used to classify the input samples. The genetic algorithm (GA) is proposed to search for 

the proper number of output nodes in the output layer of the SLNN. Furthermore, the growing method is 

proposed to determine which node has the highest priority to split in the CSVBNT because of storage 

constraint. The growing method selects a node to split in the CSVBNT according to the classification 

error rate and computing complexity of the CSVBNT. In the experiments, CSVBNT has lower 

classification error rate than other NTs when they have the same computing time.  

Key words: Neural trees, neural network, genetic algorithm. 

 

I. INTRODUCTION 

Decision trees (DT) ([1] - [6]) are commonly used techniques in machine learning, recognition and 

classification systems. The advantage of DTs is that decision nodes are easily designed and have low 

computing complexity. However, the disadvantage of DTs is that the classification error rate is high 

when a node is not a pure class. Therefore, large DTs are preferred to reduce the classification error rate, 

and then the DTs become deep trees and low performance. Neural trees (NT) ([7]–[11]) provide a 

solution for combining both decision trees and neural networks (NN), thus offering the advantages of 

both DTs and NNs. Recently, NTs have been applied to the recognition of character sets [12], human 

faces [13], range images [14], large pattern sets [15] and complex scenes [16].   
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Recently, the state-of-the-art NTs have been proposed. A neural tree with multi-layer perceptron 

(MLP) at the internal nodes was proposed by Guo and Gelfand [17]. In [17], the experimental results 

show that the NT with MLPs allows that the mode uses a smaller number of nodes and leaves. However, 

the disadvantage of NTs with MLPs is that the computing complexity is increased, since large number 

of parameters to be tuned and higher risk of overfitting. In [18], the adaptive high order neural tree 

(AHNT) is proposed. Nodes are high-order perceptrons (HOP) [19] whose order depends on the 

variation of the global error rate. First-order nodes divide the input space with hyperplanes, while HOPs 

divide the input space arbitrarily. The drawback of the AHNT is increased complexity and, thus, higher 

computational cost. In [20], the MLP is used to design the neural network tree (NNTree). Instead of 

using information gain ratio as splitting criterion, a new criterion is introduced for NNTree design. The 

new criterion captures well the goal of reducing the classification error rate. However, the main 

drawback is the necessity of an ad hoc definition of some parameters for each context and training set, 

such as the number of hidden layers, number of nodes for each layer in the neural networks. Although 

the NTs with MLPs previously described allow to divide the input space with arbitrary hypersurfaces, 

the computing complexity of a MLP is about several times the computing complexity of the single-layer 

neural network (SLNN). In [21], the single-layer perceptron tree was presented. In [22], Sirat and Nadal 

presented a binary structure of NT by using the SLNNs to solve two-class problems. Foresti and 

Micheloni [23] proposed a generalized neural tree (GNT), in which each node of the GNT is composed 

of two parts: the SLNN, and the normalizer. The learning rule is calculated by minimizing a cost 

function which represents a measure of the overall classification error of the GNT. In 2012, the balanced 

neural tree (BNT) was proposed to reduce tree size and improve classification with respect to classical 

neural tree [24]. The SLNN is also used to design each node in the BNT.  

However, there are two common drawbacks to these state-of-the-art NTs, including the AHNT, 

NNTree, GNT and BNT. First, the growth strategies of these NTs only consider how to reduce the 

classification error rate, but do not consider how to reduce the computing complexity. Then, each NT is 

designed as a deep and large tree-structured NT to reduce the classification error rate, which results in 
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the need for greater computing complexity. Therefore, an optimal NT must take into account how to 

reduce both the classification error rate and computing complexity when the depth or the number of 

nodes is limited in NT. The next drawback of these existing NTs is that the number of output nodes in 

the neural network (NN) is set to two (such as BNT) or the number of classes needed to be distinguished 

(such as GNT, AHNT and NNTree). In many cases, the number of output nodes in the output layer of 

NN is set to the number of classes needed to be distinguished, is not always the best stretgy to design the 

NT. If the number of output node in NN is too small, the samples belonging to different classes may be 

classified to the same output node in NN, and then a narrower and deeper NT will be generated. 

Otherwise, the computing complexity of NN is increased when the number of output node in NN is too 

many. Therefore, finding the proper number of output nodes in NN is an important research work in this 

study.  

Weight assignment is one of the most important factors during NN design. Basically, the weights 

are controlled by both network architecture and the parameters of the learning algorithm. In addition, 

using several layers and nodes in hidden layers causes the network to be much more complex. Other NN 

parameters such as inputs, the number of hidden layers and their nodes, the number of memory taps and 

the learning rates also affect NN performance. Genetic algorithm (GA) ([25]-[34]) has been a popular 

approach to aiding neural network learning. In [30], GA is applied to the design of both NN structure 

evolution and weight adaptation. Mahmoudabadi et al. optimized an NN with the Levenberg-Marquardt 

(LM) and GA in order to improve its performance for grade estimation purposes [31]. Samanta et al. 

applied simulated annealing for NN training [32]. Chatterjee et al. applied GA in NNs, and showed that 

this combination can result in better NN performance [33]. Tahmasebi and Hezarkhani used GA to 

optimize NN parameters and topology, and obtained improved results [34]. However, the above GAs 

assume that the number of output nodes in an NN is known and can be set by the user in advance. This 

study proposes the CSVBNT which, unlike previously applied GAs, is able to automatically generate 

the proper number of output nodes in an NN. That is, when using the proposed GA, the user does not 

need to set the number of output nodes of an NN in advance.  
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The contributions of this study are summarized as follows:  

(1) This study proposes the CSVBNT. To improve the first drawback of existing NTs, described above, 

the CSVBNT is designed to be optimized according to both the classification error rate and 

computing complexity of the CSVBNT. To fairly compare the performance of the CSVBNT and 

other NTs, the storage (i.e. the number of nodes in the NTs) is constrained. Because of the storage 

limitation, determining which node has the highest priority to split in the CSVBNT is an important 

design issue. The experiments conducted in this research demonstrate that the CSVBNT has a lower 

classification error rate than other existing NTs when they have the same computing time. 

(2) To improve the second drawback of the existing NTs described above, GA is proposed to design the 

SLNN for each internal node in the CSVBNT. The proposed GA has the ability to automatically 

generate the weights and determine the proper number of output nodes in the SLNN according to 

both the classification error rate and computing complexity of the CSVBNT. Then, the CSVBNT 

tends to be optimized. 

The remainder of this paper is organized as follows. The concept design of our proposed methods 

is described in Section II, and the design of CSVBNT with the storage constraint is presented in Section 

III. Section IV presents the design of the GA. The experiments are described in Section V, and Section 

VI presents the conclusions. 

 

II. CONCEPT DESIGN OF OUR PROPOSED METHODS 

In order to understand the entire design of the CSVBNT, the following describes the concept 

design of CSVBNT. The CSVBNT is a tree-structured classifier, in which each internal node is 

designed as an SLNN node, and each leaf node denotes the output space. Notably, the SLNN is a fully 

connected single-layer NN and each output node in the output layer of SLNN represents a branch in the 

CSVBNT. The two main contributions of the CSVBNT are described below: 

(1) The growth strategy of the CSVBNT is designed based on both the classification error rate and 

computing complexity, and then the CSVBNT tends to be optimized. Figure 1 shows an example of 
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the performance of two NTs, NT1 and NT2. In Fig. 1, if the depth of the NT is increased, the average 

classification error rate is reduced and the average computation time is increased. From Fig. 1, 

although the same classification error rate e1 can be achieved when NT1 and NT2 have sufficient 

depth, NT1 still has better performance than NT2. This is because the classification error rate of NT1 

is smaller than that of NT2 (e2 <e3) when they have the same computing time, t. That is, NT1 

outperforms NT2 when the depth or the number of nodes is limited. This situation means that if the 

storage space (i.e. the number of internal nodes in the NT) is limited, both the classification error 

rate and computing complexity must be used to identify the best NT. Therefore, the growth strategy 

of the CSVBNT takes into account how to reduce both the classification error rate and computing 

complexity, rather than the growth strategies of other NTs that only emphasize reducing the 

classification error rate. 

 

Figure 1. An example to illustrate two NTs. 

(2) The next contributions of the CSVBNT is that the proposed GA is enable to automatically search for 

the proper number of output nodes for each SLNN according to both the classification error rate and 

computing complexity of the CSVBNT. In the existing NTs, the number of output nodes in the 

output layer of NN is usually set to the number of classes needed to be distinguished, is not always 

the best growth stretgy to design the NT. Figure 2 shows a simple example to illustrate this situation. 

Figure 2(a) shows the original data set consisting of three classes of samples, Fig. 2(b) shows the 

partitions of the data set by the existing NTs, and Fig. 2(c) shows the corresponding tree classifier. 

Initially, the data set includes the three classes of samples (“a”, “b” and “c”) in Fig. 2(a). Since the 

data set has three classes of samples, the NN contained in the node 1 is then designed to have three 
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output nodes in Fig. 2(c). Similarly, node 3 in Fig. 2(c) consists of two classes of samples, “a” and 

“c”, and the NN contained in the node 3 is designed to have two output nodes to distinguish the two 

classes of samples. Therefore, an input sample classified as shown in Fig. 2(c) must be calculated 

with an average of two NNs. However, Fig. 2(d) shows another partition of data set, and Fig. 2(e) 

shows the corresponding NT that the node 1 is designed to have four output nodes. In Fig. 2(e), the 

classification of the input sample requires an average of 1.7 NNs (< 2 NNs). Thus, the NT shown in 

Fig. 2(e) than the NT shown in Fig. 2(c) has a shorter computing time when they have the same 

classification error rate. That is, the NN contained in the node 1 tends to be designed with four 

output nodes instead of three output nodes. Since the proposed GA can find the proper number of 

output nodes for the SLNN according to both the classification error rate and computing complexity 

of the CSVBNT, the CSVBNT becomes a variable-branch tree classifier that tends to be optimized. 

               
(a) Original data set.              (b) Partition of the data set by the existing NTs. 

        
(c) The existing NTs.              (d) Other partition of data set. 

 
(e) Other better NT. 

Figure 2. An example to illustrate the NTs. 
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The following describes the entire design flow of CSVBNT. In the training phase, the 

Design_CSVBNT algorithm described in Section III is proposed to design the CSVBNT. Figure 3(a) 

shows the flow chart of the Design_CSVBNT. In Fig. 3(a), the Design_CSVBNT algorithm is applied 

to design the CSVBNT by employing the GA described in Section IV to design the SLNNs in the 

CSVBNT. In the Design_CSVBNT, the number of internal nodes (SLNN nodes) denotes the storage 

space required to store the CSVBNT. The Design_CSVBNT is continued to design the CSVBNT from 

top to bottom until the storage space is reached. After the Design_CSVBNT is finished in the training 

phase, the CSVBNT can be obtained. 

Furthermore, the Design_CSVBNT(recursive) algorithm is proposed to improve the efficiency of 

Design_CSVBNT in finding the best solution for the GA. The Design_CSVBNT(recursive) is a 

recursive version of Design_CSVBNT, and they all use the same GA to design the SLNNs in the 

CSVBNT. Figure 3(b) presents the flow chart of the Design_CSVBNT(recursive). In Fig. 3(b), the 

GA_SLNN is used to employ the GA in a recursive way. In the study, the Design_CSVBNT(recursive) 

instead of the Design_CSVBNT is used to generate the CSVBNT.  

In the testing phase, the Test_CSVBNT algorithm described in Section III is used to explain how 

the input sample travels to the CSVBNT and derives the final classification result. Fig. 3(c) shows an 

example of the CSVBNT. In Fig. 3(c), the internal nodes, A, B and C, are designed as SLNNs, and the 

leaf nodes, L1, L2, L3, L4, L5 and L6, are used to position the output space. Each output node in the 

SLNN has a related branch in the CSVBNT. In Fig 3(c), node A consists of three branches because the 

SLNNA consists of three output nodes in the output layer. Also, SLNNB and SLNNC consist of two and 

three output nodes, respectively. Let the input sample be input to node A and classified to the output 

node, O3, in the SLNNA. The input sample then traces the related branch of O3 and reaches node C. 

Similarly, the input sample continues to be classified in the SLNNC, and reaches node L4. Finally, the 

input sample is positioned in the same class as the arriving leaf node, L4. The details of the testing 

algorithm, Test_CSVBNT, are described in Section III. 
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 (a) The flow chart of the Design_CSVBNT  (b) The flow chart of the Design_CSVBNT(recursive) 

 

(c) The example of CSVBNT (○: SLNN node ●: leaf node) 

Figure 3. The concept design of the CSVBNT. 
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In order to enable readers to easily understand the proposed methods in this study, Table 1 lists the 

summary of important symbols used in Sections III, IV, and V. 

Table 1. Summary of symbols used in this study 

Symbols Description 

T CSVBNT 

it
SLNN  SLNN designed for the internal node, 

jt  

V(
jt ) computing complexity of the leaf node, 

jt  (Eq. (1)) 

)( itCC  computing complexity of 
it

SLNN  (Eq. (2)) 

f number of inputs in SLNN 

ir  number of outputs in 
it

SLNN  

H set of all leaf nodes in the CSVBNT, T 

P( jt ) probability of falling at node 
jt  (Eq. (3)) 

V(T) computing complexity of the CSVBNT, T (Eq. (3)) 

Class(
kX ) class of training sample, 

kX  

jC  j’th cluster 

jS  center of cluster 
jC  

jtm  number of training samples contained in the node 
jt  

),( kj XCP  probability that 
kX  is classified to 

jC  (Eq. (5)) 

jM  output space of node 
jt  (Eq. (6)) 

)( jtR  classification error rate of node 
jt  (Eq. (7)) 

R(T) classification error rate of the CSVBNT, T (Eq. (8)) 

)( jtλ  slope of the classification error rate and computing complexity for the leaf node, jt  (Eq. (9)) 

 storage space (Design_CSVBNT) 

, , 
M  variables used to record the range of solution space (Design_CSVBNT(recursive)) 

θ minimum solution space size (Design_CSVBNT(recursive)) 

LSLNN  SLNN generated in the left subspace (Design_CSVBNT(recursive)) 

RSLNN  SLNN generated in the right subspace (Design_CSVBNT(recursive)) 

j  j’th activation threshold 

jiw ,
 weight between the i’th input node and the j’th output node in the SLNN 

jO  value of the j’th output node in the SLNN (Eq. (11)) 

N population size  

qRSLNN  SLNN encoded by the q’th string,
qR   

  )(tλq
 changes in both the computing time and the classification error rate of CSVBNT after the SLNN 

for node t is generated by the string,
qR  (Eq. (13)) 

ε random value used to change the weights in the mutation phase (Eq. (15)) 

v(i, j) wavelet coefficient at location (i, j) in the subband (Eq. (17)) 

n size of the subband (Eq. (16) and Eq. (17)) 

Pc crossover rate 

Pm mutation rate 

 

  

1 2
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III. DESIGN OF THE CSVBNT 

In the design of CSVBNT, both of the computing complexity and classification error rate of 

CSVBNT are emphasized to be as small as possible. Before the design of CSVBNT is described, both of 

the computing complexity and classification error rate of CSVBNT are defined in the following. 

The computing complexity of CSVBNT is defined as follows. Let T denote the CSVBNT, and let 

H denote the set of all leaf nodes in T, including leaf node jt . Let L( jt ) denote the set of internal nodes 

that are required to be calculated when the input sample travels the CSVBNT from the root node to the 

leaf node jt . Then, the computing complexity of the leaf node jt , V( jt ), is defined as  

V( jt )= 
 )L(

)(
ji tt

itCC   (1) 

,where )( itCC  denote the computing complexity of 
it

SLNN  for the internal node, it . Let the 
it

SLNN  

contain f inputs and ir  output nodes. Then, the )( itCC , is defined as  

ii frtCC )( . (2) 

Let P( jt ) represent the probability on the training samples in the leaf node jt . The computing 

complexity of T, V(T), is defined as 





Ht

jj

j

tVtPTV )()()(   (3) 

The classification error rate of CSVBNT is described as follows. Let the leaf node jt  contain 

jtm  training samples, ff

kkkk RxxxX  ),...,,( 21 , for 
jtmk 1 , and let Class( kX ) denote the class of 

training sample, kX . Let 
jC = }1 ))(,{(

jtkk mkXClassX   be a cluster that collects the training 

samples contained in the leaf node jt . Let 
jS  be the center of cluster 

jC . The center 
jS  of cluster 

jC  

is defined as follows. 

j

jt

t

m

k

k

j
m

X

S

 1 . (4) 
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Thus, the probability that 
kX  is classified to 

jC , ),( kj XCP , is defined as 


 




Ht Kh

Kj

Kj

h
XS

XS
XCP

][

1
),( ,  (5) 

where   denotes the Euclidean distance. Notably, ),( kj XCP  satisfies the constraints, 

1),(0  kj XCP  and 1),( 
Ht

kh

h

XCP . Then, the representative of jt  positioned in the output space 

is given as 















jt

jkk

jt

jkk

mk

CXClassX

kj

mk

CXClassX

kkj

j
XCP

XClassXCP

M

1         

))(,(

1          

))(,(

),(

)(),(

.  (6) 

Then, the classification error rate of leaf node jt , )( jtR , is thus defined as 

2

1       

))(,(

))()(,()( 






jt

jkk

mk

CXClassX

jkkjj MXClassXCPtR . (7) 

Finally, the classification error rate of T, R(T), is defined as 





Ht

jj

j

tRtPTR )()()( . (8) 

In the design of CSVBNT, how to grow the tree structure of CSVBNT is described as follows. 

The growing method of CSVBNT selects the best leaf node to split at a time. That is, the GA described 

in Section III attempts to split each leaf node, and finds the best leaf node to branch in the CSVBNT. 

The following explains how to determine which one is the best leaf node. Let the leaf node jt  contain 

jtm  training samples. If the leaf node jt  will be split in the CSVBNT, the GA is applied to these 
jtm  

samples to design an SLNN for the node jt . Each output node in the output layer of the SLNN dnotes 

the corresponding child node of node jt . Let the tree 
jtT  indicate the tree T after jr  child nodes, 

jrjjj ttt ,2,1, ,...,, , of jt  are generated by the GA. Then, the slope of the classification error rate and 
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computing complexity for the leaf node, jt , between T and 
jtT  is: 

   
)(-)(

)(-)(
)(

TVTV

TRTR

V

R
tλ

j

j

t

t

j 



 .  (9) 

In the growing method of CSVBNT, the best leaf node is defined as the node with the largest value in 

Eq. (9). Therefore, let the set H consist of the leaf nodes in T. After each leaf node in H is designed as an 

SLNN, we can obtain  

)(max arg j
Ht

tλu
j

 .   (10) 

Then, the node ut  is the best leaf node that has the highest priority to be split in T. Figure 4 shows an 

example to illustrate the growing method of CSVBNT. In Fig. 4, T1 denotes the CSVBNT after the leaf 

node t1 is split in T, and T2 denotes the CSVBNT after the leaf node t2 is split in T. The growing method 

selects one node at a time to split in T. From Fig. 4, T2 is better than T1 because the classification error 

rate of T2 is smaller than that of T1 when the computing time is the same. Thus, the aim of the design of 

CSVBNT is to maximize the slope of the classification error rate and computing complexity.  

 

Figure 4. The relation between the classification error rate and computing time in CSVBNT. 

 

The training and testing phases of CSVBNT are described below.  

Training Phase: 

In the training phase, two algorithms, Design_CSVBNT and Design_CSVBNT(recursive), are 

proposed to design the CSVBNT in this study. The Design_CSVBNT(recursive) is a recursive version 

of Design_CSVBNT. Before describing the design of Design_CSVBNT(recursive), the 

Design_CSVBNT is given as follows. Figure 3(a) also shows the flow chart of the Design_CSVBNT. 
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Notably, the storage space is defined as the number of internal nodes of the CSVBNT in the 

Design_CSVBNT. 

 

Algorithm: Design_CSVBNT 

Input: The storage speac  and the training data set. 

Output: The CSVBNT with the storage constraint. 

Step 1. Let the root node, t, of tree T contain all of the training samples in the training data set. Set 

STORAGE= 0 and H={t}. 

Step 2. While STORAGE    

Step 2.1. For each node it ∈ H and 0)( itR , perform the following.  

Step 2.1.1 The GA described in Section IV is applied to the samples contained in 

the node it , and then the 
it

SLNN  is produced for node it . 

Step 2.1.2 Let the 
it

SLNN  contain ri output nodes in the output layer. Each 

output node in the 
it

SLNN  denotes a child node of node, it . Calculate 

the value of   )( itλ  as Eq. (9).  

Step 2.2. Calculate )(max arg i
Ht

tλu
i

  as Eq. (10). The node, ut , is the beast leaf noode that 

has the highest priority to be designed as an 
ut

SLNN , and then the new CSVBNT, 

ut
T , is produced. Let there be w child nodes for node ut . Delete the node ut  in the 

set of H and add these w new nodes to the set of H.  

Step 2.3. Set T=
ut

T and STORAGE=STORAGE+1.  

Step 3. Output the CSVBNT, T. 

In Step 1, the root node t contains all the training samples. The set H represents a collection that 

contains all nodes that can be branched in the CSVBNT. Initially, set H contains only the root node t, in 

Step 1. In the first loop of Step 2, the set H={t} contains only the root node t, and then the root node t, is 

selected to be designed as an tSLNN  node by the GA algorithm in Step 2.1. In Step 2.2, assume that 
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the root node t is split into three child nodes, t1, t2 and t3. Then, the set H ={t1, t2, t3} can be obtained. In 

Step 2.3, the CSVBNT is built into a tree, tT , that contains only one root node and three leaf nodes, and 

the STORAGE value is increased to one. Figure 5(a) shows the CSVBNT, tT , after the first loop of 

Step 2 is complete. In the second loop of Step 2, the GA algorithm is applied to nodes t1, t2 and t3, 

contained in H, then the three SLNN nodes 
1

SLNN t , 
2

SLNN t  and 
3

SLNN t , and three values,   )( 1tλ , 

  )( 2tλ  and   )( 3tλ , are produced in Step 2.1. In Step 2.2, the best node is the one with the maximal value 

of λ . Assume that the value of   )( 1tλ  is larger than both values of   )( 2tλ  and   )( 3tλ . Node t1 is 

selected to be designed as the 
1

SLNN t  built into the CSVBNT. Assume that node t1 contains two child 

nodes, t11 and t12. Then, set H is updated to {t11, t12, t2, t3}. In Step 2.3, the STORAGE value is increased 

to two, and the new CSVBNT tree, 
1t

T , replaces tree tT . Figure 5(b) shows the CSVBNT, 
1t

T , after 

the second loop of Step 2 is complete. In Step 2 of each loop, the best node is selected from set H to be 

designed as the SLNN node in the CSVBNT, and this step is repeated until the storage space limit is 

reached. 

      

(a) tT                (b) 
1t

T  

Figure 5. The example illustrates the Design_CSVBNT (○: SLNN node ●: leaf node). 

 

In this study, the Design_CSVBNT(recursive), is also proposed to improve the efficiency of the 

Design_CSVBNT. The design of Design_CSVBNT(recursive) is described as follows. Figure 6 shows 

the difference in calling GA to find the best SLNN between Design_CSVBNT and 

Design_CSVBNT(recursive). In Step 2.1.1 of the Design_CSVBNT algorithm, the number of samples 

it
m  contained in node it  indicates that that number of output nodes in the 

it
SLNN  can be up to 

it
m . 
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If the value of 
it

m  is large, the GA should spend more time searching for the proper number of output 

nodes in the 
it

SLNN  from 
it

m  possible solutions, as shown in Fig. 6(a). To avoid the GA having to 

search a large solution space to find the solution, the overall solution space can be divided into two or 

more smaller subspaces in a recursive way, and then the GA can efficiently find the best solution in the 

smaller subspaces. Therefore, the Design_CSVBNT algorithm can be rewritten as a recursive version, 

namely Design_CSVBNT(recursive), which uses the divide-and-conquer strategy to design the SLNN 

by calling the recursive algorithm GA_SLNN, as shown in Fig. 6(b). Figure 3(b) also shows the flow 

chart of the Design_CSVBNT(recursive). 

 

(a) The Design_CSVBNT 

 

(b) The Design_CSVBN(recursive) 

Figure 6. The difference in calling GA to find the best SLNN between Design_CSVBNT and 

Design_CSVBNT(recursive). (    : Call,     : Return) 

 

The Design_CSVBNT(recursive) algorithm is described as follows.  

Algorithm: Design_CSVBNT(recursive) 

Input: The storage speac  and the training data set. 

Output: The CSVBNT with the storage constraint. 
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Step 1. Let the root node, t, of tree T contain all of the training samples in the training data set. Set 

STORAGE= 0 and H={t}. 

Step 2. While STORAGE    

Step 2.1. For each node it  in H and 0)( itR , perform the following.  

Step 2.1.1 Let 
it

m  be the number of samples contained in the node it . Call the 

GA_SLNN( =2, =
it

m ) to obtain the 
it

SLNN  for the leaf node it .  

Step 2.1.2 Let the 
it

SLNN  contain ri output nodes in the output layer. Each 

output node in the 
it

SLNN  denotes a child node of the node, it . 

Calculate the value of   )( itλ  as Eq. (9).  

Step 2.2. Calculate )(max arg i
Ht

tλk
i

  as Eq. (10). The node, kt , is the beast leaf noode that 

has the highest priority to be designed as an 
kt

SLNN , and then the new CSVBNT, 

ktT , is produced. Let there be w child nodes for the node kt . Delete the node kt  in 

the set of H and add these w new nodes to the set of H.   

Step 2.3. Set T=
ktT and STORAGE=STORAGE+1.  

Step 3. Output the CSVBNT, T. 

 

Algorithm: GA_SLNN (Input: ,Input: ) 

Step 1. If   12 , then GA is applied to these 
it

m  samples contained in the leaf node it , to 

design the 
it

SLNN  whose number of output nodes in the output layer is within the range 

[ ]. Set Best_SLNN=
it

SLNN  and Best_Fit= the value of the best fitness.  

Return both the Best_SLNN and Best_Fit. End. 

Step 2. If   12 , do the following. 

Step 2.1 Calculate 






 


2

12 
M . 

1 2

1 2

21   , 
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Step 2.2 Call GA_SLNN( , M -1). Then, both the LSLNN  and Best_FitL can be 

obtained.  

Step 2.3 Call GA_SLNN( M , ). Then, both the RSLNN  and Best_FitR  can be 

obtained.  

Step 3. If Best_FitR > Best_FitL Then Best_SLNN= RSLNN  and Best_Fit= Best_FitR.  

Otherwise Best_SLNN= LSLNN  and Best_Fit= Best_FitL.  

Return both the Best_SLNN and Best_Fit. End. 

 

In Step 2.1.1 of Design_CSVBNT(recursive), GA_SLNN( =2, =
it

m ) is a recursive algorithm. 

After calling the GA_SLNN( =2, =
it

m ), the 
it

SLNN  with the number of output nodes within the 

range [ =2, =
it

m ] can be generated by the GA. Notably, two classes ( =2) are the minimum 

number of classes that need to be distinguished, and the maximal number of output nodes in 
it

SLNN  is 

equal to mt ( =
it

m ) such that each sample is regarded as the only member of its own class. Therefore, 

the 
it

SLNN  generated by the GA still tends to be optimal because the GA has a global search within 

the range [2, mt].   

In Step 1 of the GA_SLNN, if the range of the solution space, [ , ], is small, the GA is 

directly used to design the SLNN with the number of output nodes in the output layer within the range 

[ ]. Then, the GA_SLNN returns both the best SLNN and the maximal fitness value generated by 

the GA. In the Step 2 of the GA_SLNN, if the range of the solution space, [ , ], is large, the 

solution space, [ , ], is divided into two subspaces, [ , M -1] and [ M , ], in a recursive way. 

That is, the GA is used to design the SLNNs in these two subspace, [ , M -1] and [ M , ], instead 

of the whole solution space, [ , ]. In Step 3, the GA_SLNN returns both of the variables, 

Best_SLNN and Best_Fit, recording the best SLNN and the maximal value of the fitness generated by 

GA in these two subspaces, respectively. 

1

2

1 2

1 2

1 2 1

2

1 2

21   , 

1 2

1 2 1 2

1 2

1 2
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Notably, in the GA_SLNN, the threshold θ is not a critical value for users. If the threshold θ 

is small, the overall solution space can be divided into smaller (or more) subspaces, and then the GA can 

efficiently find the best solution in the smaller subspaces. Otherwise, the solution space will be cut into 

larger (or fewer) subspaces. However, if the threshold θ is large enough, the Step 1 will only be 

performed in GA_SLNN, and then Design_CSVBNT(recursive) and Design_CSVBNT become the 

same algorithm.  

After the training phase is finished, the CSVBNT can be obtained. In the CSVBNT, each leaf node 

is used to position the output class of the input samples. However, once there will be many different 

classes of training samples classified to the same leaf node in the training phase. Then, the output class 

representing a leaf node is defined as the class to which the largest number of training samples belongs 

in the leaf node. 

 

Testing Phase: 

The testing algorithm, Test_CSVBNT, is proposed to classify an input sample in the CSVBNT. 

Before the Test_CSVBNT is given, the following describes how to classify an input sample in the 

tSLNN  for the internal node t. Let the tSLNN  contain f inputs and tr  output nodes. The values of 

j  for  0< j <1, trj 1  denote the activation thresholds. The values of jiw ,  for 0< jiw , <1, 

fi 1 , and trj 1 , indicate the weights between the input and output layers. Let the sample, 

ff

kkkk RxxxX  ),...,,( 21 , be the input to the tSLNN . In the tSLNN , the value of the jth output node, 

jO , is the sum of its weighted inputs as follows. 

j

f

i

i

kijj xwO  


)(
1

, trj 1   (11) 

Let 

}1 max{ arg tj rjOu  .    (12) 

The input sample, kX , is then classified to the uth output node in the tSLNN .  
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The Test_CSVBNT algorithm is given as follows.  

Algorithm: Test_CSVBNT 

Input: The input sample ff

kkkk RxxxX  ),...,,( 21  and tree classifier, CSVBNT. 

Output: The class of kX . 

Step 1. Let t  be the root node of the CSVBNT.  

Step 2. While t  is not a leaf node 

Step 2.1. The input sample, kX , is the input to the tSLNN . Calculate the values, jO , for 

trj 1 , as Eq. (11). 

Step 2.2. Calculate }1 max{ arg tj rjOu   as Eq. (12).  

Step 2.3. The input sample, kX , is classified to the uth output node in the tSLNN . Then, the 

input sample, kX , towards the corresponding child node, ut , of the node, t , in the 

CSVBNT.  

Step 2.3. Set t = ut  

Step 3. Output the representative class of node t . 

 

 

IV. DESIGN OF THE GA 

There are two design issues for the GA. First, the GA searches for the weights in the SLNN. Next, 

the GA can automatically search for the proper number of output nodes in the output layer of the SLNN 

based on the classification error rate and computing complexity of CSVBNT. Let T be the CSVBNT, 

and let t be the node that contains tm  input samples in T. The main goal of GA is to design the SLNN 

for node t. Each output node in the output layer of the SLNN is designed as a corresponding child node 

of node t, in the CSVBNT. The GA is designed based on the genetic algorithm, which includes the 

initialization step and three phases: reproduction, crossover, and mutation. They are described as 

follows. 
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Initialization 

In the initialization step of GA, a population of N strings, NRRR ,...,, 21 , is randomly generated. 

The length of each string is set to be smaller than, or equal to, the value of tm , i.e. the length of each 

string is variant in GA. That is, the number of child nodes of node t generated by the GA is within the 

range [2, tm ]. Let the string 
qR  encode the 

qRSLNN , which has f inputs and 
qRr output nodes, for 

Nq 1 . The values of j  denote the j’th activation thresholds for 0< j <1, 
qRrj 1 . The values 

of jiw ,  indicate the weights between the input and output layers for 0< jiw , <1, fi 1  and 

qRrj 1 . The string qR  then encodes the 
qRSLNN , as follows.  

qR =(O_nodeq(1),O_nodeq(2),…, O_nodeq(
qRr )) 

, where O_nodeq(j)=( j , 11w ,…, jfw  ), for 
qRrj 1 .  

The following is an example of the initialization step. Let there be two elements (f=2) for each 

input sample, and let 
qRr =3 be a random value generated within [2, tm ]. qR  then encodes the solution 

as follows.  

qR =( 1 , 11w , 12 w , 2 , 12w , 22 w , 3 , 13w , 32 w ) 

=(O_nodeq(1), O_nodeq(2), O_nodeq(3)) 

,where O_nodeq(1)=( 1 , 11w , 12 w ), O_nodeq(2)=( 2 , 12w , 22 w ), and O_nodeq(3)=( 3 , 13w , 32 w ). Figure. 7 

also shows the corresponding 
qRSLNN  encoded by the string qR . 

 

 

Figure 7. The corresponding 
qRSLNN  encoded by the string qR . 
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Reproduction: 

In the reproduction phase, the definition of fitness depends on both the classification error rate and 

computing complexity of the CSVBNT. The following describes the definition of fitness for the string 

qR . Before the fitness of string 
qR  is defined, the following describes how to classify a training sample 

in the 
qRSLNN . Let ff

kkkk RxxxX  ),...,,( 21  be a sample contained in node t. In the 
qRSLNN , the 

values, j

f

i

i

kijj xwO  


)(
1

, for 
qRrj 1 , are calculated according to Eq. (11), and the value of 

}1 max{ arg
qRj rjOu  is calculated via Eq. (12). Sample kX  is then classified to the uth 

output node in the 
qRSLNN . After all of these tm  training samples contained in node t have been 

classified to these 
qRr  output nodes, the training samples classified to the same output nodes can be 

collected to be designed as child nodes of t. That is, 
qRr  child nodes 

qRttt ,...,, 21 of node t are generated 

based on these 
qRr  output nodes in the 

qRSLNN . Let the tree T   indicate the tree T after the 
qRr  

child nodes of node t  have been generated. The fitness function of string qR  is then defined as:, 

Fitness(
qR )=   )(tλq , for Nq 1 ,   (13) 

where   )(tλq  is defined in Eq. (9) as representative of changes in both the computing time and the 

classification error rate of CSVBNT.  

After the fitness values of these N strings, NRRR ,...,, 21 , in the population have been obtained, the 

probability of each string being selected for the next generation can then be calculated as follows: 

Prob( qR )=




N

l

l

q

t

t

1

)(

)(




, for Nq 1 . (14) 

Notably, Prob( qR ) satisfies 1)(0  qRProb  for Nq 1 , and 1)(
1




N

q

qRProb . In the reproduction 

phase, the reproduction operator selects N strings as the new population in the next generation according 
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to the probability values, Prob(
qR ) for Nq 1 .  

The following shows an example of the reproduction phase. Let there be five probability values, 

Prob( 1R )=0.2, Prob( 2R )=0.15, Prob(
3R )=0.1, Prob( 4R )=0.15 and Prob(

5R )=0.4, for five strings,
qR  

for 51  q , in the population. Figure 8 shows the distribution of these five probability values in the 

range [0, 1]. In the reproduction phase, the reproduction operator generates five random values within [0, 

1] such as 0.15, 0.3, 0.5, 0.7 and 0.9, to determine which strings are selected for the next generation. 

From Fig. 8, the reproduction operator selects 1R , 2R , 4R , 5R , and 5R , to be the new population in 

the next generation. Notably, the string 5R  is selected twice and 3R  is omitted. The meaning of the 

reproduction phase is that the string with higher fitness has a greater probability of being repeatedly 

selected and the strings with lower fitness may be removed in the next generation. 

Prob( 1R )=0.2 Prob( 2R )=0.15 Prob( 3R )=0.1 Prob( 4R )=0.15 Prob( 5R )=0.4 

  0                0.2            0.35          0.45              0.6                                1 

            0.15               0.3                    0.5               0.7                 0.9 

Figure 8. The distribution of five probability values in the range, [0. 1]. 

Crossover: 

In the crossover phase, the crossover operator is applied to the population of N strings. Then, a pair 

of strings, xR  and yR , is selected to do crossover operator. Then, two random integers, a and b, are 

generated to determine which pieces of the strings are to be interchanged. Notably, if the number of 

output nodes contained in the string is outside the range [2, mt] after the crossover operator is completed, 

the two values, a and b, should be randomly generated again. After the crossover operator is finished, 

two new strings, xR̂  and yR̂ , replace the strings, xR  and yR , in the population. The significance of 

the crossover phase is that it exchanges the output nodes including the connected weights between 

different strings, to yield various neural networks.  

The following shows an example of the crossover phase. Let there be two elements (f=2) for each 

sample. Let 1R  contain three output nodes, and let 2R  contain four output nodes. Then, after the 
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crossover operator with two random integers (a=1 and b=2) is applied to the pair of strings, 1R  and 

2R , two new strings, 
1R̂  and 

2R̂ , are generated in the next generation.  

              a=1 

1R = ( ))2(_  ),1(_ 11 nodeOnodeO  

, where 

O_node1(1)=( 1 , 11w , 21w ),  

O_node1(2)=( 2 , 12w , 22w ). 

b=2 

2R =( ))3(_),2(_ ),1(_ 222 nodeOnodeOnodeO  

, where 

O_node2(1)=( 1 , 11w , 21w ),  

O_node2(2)=( 2 , 12w , 22w ), 

O_node2(3)=( 3 , 13w , 23w ). 

After the crossover operator is applied to 1R  and 2R , two new strings, 1R̂  and 2R̂ , are generated as 

follows. 

1R̂ = ( )2(_  ),1(_ 22 nodeOnodeO , ))2(_ 1nodeO  

2R̂ = ( )1(_ 1nodeO , ))3(_ 2nodeO  

Mutation: 

In the mutation phase, the weights of the strings in the population are randomly chosen with a 

probability. Each chosen weight is added by the multiplication of the chosen weight and a random value 

(0<ε<1). The following shows an example of the mutation phase. Let 1R  be presented as follows:  

1R = ( ))2(_  ),1(_ 11 nodeOnodeO ,  

where 

O_node1(1)=( 1 , 11w , 21w ),  

O_node1(2)=( 2 , 12w , 22w ). 
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If the weight w11 is chosen to perform the mutation, the new weight w’11 replaces weight w11 as follows: 

w’11= w11±w11 *ε, (15) 

where the value, ε, is a random value within the range [0, 1]. After the mutation phase, the new string 

can be obtained and replace the original string. 

The user may specify the number of generations over which to run in the GA. Suppose that the 

string 
xR̂  with the best fitness generates the SLNN with xr̂  output nodes. Then, xr̂  child nodes of 

node t are generated in T, according to these xr̂  output nodes contained in the SLNN.  

 

V. EXPERIMENTS 

A. Experimental setting 

In the experiments, the Design_CSVBNT(recursive) algorithm is used to design the CSVBNT 

with the storage constraint. The proposed CSVBNT is compared with other NTs under the same number 

of internal nodes. A run of twenty times is carried out for accurately proposing the results of the 

CSVBNT and other NTs. In our proposed methods, the threshold, 
10

it
m

 , is applied to the GA_SLNN 

since the one-tenth size of the overall solution space is sufficiently small for the GA to efficiently find 

the best solution. Also, the parameters used in the GA are as follows: population of 300, crossover rate, 

Pc = 80%, and mutation rate, Pm = 5%. Five hundred generations are run in the GA, and the best 

solution is retained. All the experiments are carried out on personal computers.  

Four data sets: speech, traffic sign images, natural images, and chessboard data sets are used to test 

the CSVBNT and other NTs in the experiments. These four data sets are described as follows.  

(1) In the speech data set, the ISOLET database using the 26 letters of the English alphabet is used in 

the isolated word recognition test. The speech data set consists of 6240 utterances including 4000 

training utterances and 2240 testing utterances, from 120 speakers. Each utterance is sampled at 16 

kHz with a 16-bit resolution. A Hamming window of 20 ms with 50% overlap is used to process 

each utterance further by Fast Fourier Transform (FFT). Each utterance is divided into 15 Hamming 

windows, with each represented by 32 FFT coefficients; that is, each utterance consists of 480 
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features.  

(2) The traffic sign images data set is obtained from the GTSRB database [35]. The training set consists 

of 5000 images, and the other 5000 images are used to test the methods in our experiments. All 

images belong to forty classes. The actual traffic sign is not always centered within the image; its 

bounding box is part of the annotations. We crop all the images and process them only within the 

bounding box, and resize them to achieve square bounding boxes. All traffic sign images are resized 

to 48x48 pixels.  

(3) The natural images of 32x32 pixels are obtained from the CIFAR10 database [36]. The CIFAR10 

database consists of ten classes of images, each with 5000 training images and 1000 testing images. 

Images vary greatly within each class. They are not necessarily centered, and may contain only parts 

of the object, and show different backgrounds.  

(4) The symmetrically distributed four-class chessboard data set is used to test the CSVBNT and other 

current methods. Figure 4(a) shows the chessboard data set that consists of 400 patterns equally 

distributed among four classes. A five-fold cross-validation is performed, and average results are 

presented.  

In both the traffic sign and natural images data sets, all color images should be transformed into 

the gray images in the experiments. Then, each image is divided into blocks of 16×16 pixels. Each block 

is then transformed by a Haar wavelet transform [37] to obtain four subbands. The mean values (mv) 

and standard deviations (sd) of the four subbands are calculated as follows: 





n

ji

jiv
n

mv
1,

2
),(

1
,  (16) 

 
2

1,
2

),(
1




n

ji

mvjiv
n

sd ,  (17) 

where n denotes the size of the subband, which is set to 8 in this experiment, and v(i, j) denotes the 

wavelet coefficient at location (i, j) in the subband. Therefore, each block, which contains four subbands, 

can be represented by a feature vector with eight values since each subband is associated with two 

values, sd and mv.  
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B. Performance of CSVBNT 

Before testing the performance of CSVBNT, the sensitivity of these two parameters, Pc and Pm , 

in the GA is described as follows. If Pc is set to 50%, the GA requires twice the number of generations 

to get a similar or poor solution in four data sets, compared with when Pc is set to 80% or 90%. This is 

because the use of a too small Pc will affect the efficiency of the GA. Also, when the probability Pm is 

set to less than 10%, the GA can obtain similar results under the same number of generations. However, 

if Pm is set to 15%, the GA usually does not converge. This is because the strings are changed too much 

in the GA, so that the GA cannot converge to a solution. Therefore, both parameters, Pc = 80% and Pm 

= 5%, are applied to the GA in the experiments. 

In Table 2, the different storages of  are used to design the CSVBNT on four datasets. In this 

study, the storage is defined as the number of internal nodes in the CSVBNT. Notably, because each 

internal node contains an SLNN, the storage, , also denotes the total number of SLNNs dsigned in the 

CSVBNT. In Table 2, the “Num_O” denotes the average number of child nodes of an internal node (or 

the average number of output nodes in the output layer of an SLNN), the “DEP” denotes the average 

depth of the CSVBNT, and the “CER” denotes the average classification error rate on the training 

dataset. The classification error rate is defined as Eq. (8). When the value of  is set to , it represents 

that the storage space is unlimited, and then the CSVBNT is grown until the classification error rate is 

less than a small threshold  ( = 2%), or the training error rate exhibits no obvious decrease. 

In the experiments, the proposed CSVBNT is compared with four NTs: GNT [23] , AHNT [18], 

NNTree [20] and BNT [24]. To fairly compare our proposed CSVBNT and other NTs, the CSVBNT 

and other NTs have the same storage space (i.e., the same number of internal nodes) in the experiment. 

In Table 3, the “TIME” denotes the average computing time for a testing sample, and the “CER” 

denotes the average classification error rate on the testing dataset. In Table 3, we observe that both of 

the AHNT and NNTree than the proposed CSVBNT have lower classification error rate when the 

storage space is the same. The reason is that the MLP allows to divide the input space with arbitrary 

hypersurfaces in the AHNT and NNTree. That is, if the distribution of samples contained in the node is 
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complex (non-linear distribution), the node is preferred in designing an MLP, and then the classification 

error rate of both the AHNT and NNTree can be decreased. However, we also observe that both of the 

AHNT and NNTree using the MLPs than the CSVBNT using the SLNNs take more computing time 

when they have the same storage in Table 3. The reason is that the SLNN than the MLP has lower 

computing complexity. The computing complexity of an MLP is usually larger than twice the 

computing complexity of the SLNN.  

Figure 9 shows the experimental results proposed in Table 3, and Figure 10 shows the 

classification results obtained by the CSVBNT on the chessboard data set. From Fig. 9, we observe that 

the CSVBNT than other NTs has lower classification error rate when they have the same computing 

time. Two reasons are offered as follows. (1) The proposed growing strategy designs the CSVBNT 

according to the classification error rate and computing complexity of CSVBNT, while the other NTs 

including GNT, AHNT, NNTree and BNT, only consider the reduction of the classification error rate. (2) 

The GA is capable of searching for the proper number of output nodes in the SLNN according to the 

classification error arte and computing complexity of CSVBNT. Figures 1 and 2 has shown that the 

characteristics of the CSVBNT differ from those of other NTs.  

Table 2. The efficiency of the CSVBNT on the training datasets. 

Data 

Sets 
 Num_O DEP 

CER 

(%) 

Speech 

5 3.25 3.43 22.36 

8 3.18 5.25 12.37 

11 3.25 7.46 8.29 

14 3.25 8.35 4.21 

 3.33 14.25 1.52 

Traffic 

sign 

images 

5 5.35 3.43 21.42 

8 5.52 5.54 16.32 

11 5.53 6.34 8.74 

14 5.54 8.25 3.27 

 5.52 13.78 1.39 

Natural 

images 

5 2.44 3.36 25.43 

8 2.64 4.46 18.48 

11 2.52 6.64 13.35 

14 2.56 8.63 7.62 

 2.67 12.38 1.78 

Chess- 

board 

3 2.00 3.47 18.35 

6 2.00 4.53 13.48 

9 2.00 5.35 7.48 

12 2.00 7.45 3.49 

 2.00 10.58 1.92 
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Table 3. The performance the CSVBNT and other NTs on the testing datasets 

Data 

Sets 
 

CSVBNT GNT [23] BNT [24] NNTree [20] AHNT [18] 

CER 

(%) 

TIME 

(sec) 

CER 

(%) 

TIME 

(sec) 

CER 

(%) 

TIME 

(sec) 

CER 

(%) 

TIME 

(sec) 

CER 

(%) 

TIME 

(sec) 

Speech 

5 27.42 5.52 32.18 5.43 31.28 5.13 24.52 13.37 22.22 11.63 
8 18.64 10.72 21.52 10.52 21.35 11.18 14.32 20.38 13.26 18.34 
11 12.23 18.15 16.12 17.85 15.27 18.33 10.35 32.48 9.29 28.25 
14 6.32 25.22 8.62 23.32 8.31 25.36 5.33 48.37 4.3 42.23 

 2.12 47.85 2.62 43.43 2.53 45.43 2.11 65.83 2.08 59.32 

Traffic 

sign 

images 

5 25.42 6.33 28.32 6.13 27.33 6.25 21.42 13.31 18.24 13.13 
8 19.12 11.24 21.44 10.34 21.65 11.34 14.21 24.45 13.51 23.25 
11 13.14 18.37 16.32 16.64 16.21 17.24 8.53 39.42 8.33 37.52 
14 7.42 25.38 9.82 22.32 9.63 23.33 4.72 58.34 4.42 54.84 

 2.19 48.12 2.52 47.32 2.31 51.52 1.91 68.32 1.86 64.52 

Natural 

images 

5 33.42 6.38 34.22 6.22 34.12 7.42 31.51 14.32 31.31 13.22 
8 25.84 12.92 27.82 12.44 27.27 12.94 21.85 29.34 21.52 28.35 
11 18.65 19.66 20.42 18.42 20.22 21.23 14.36 41.23 13.26 40.13 
14 12.82 26.32 15.95 25.73 15.52 27.74 9.82 60.44 9.32 57.4 

 3.19 58.27 3.29 57.32 3.21 61.35 2.42 78.33 2.12 73.3 

Chess- 

board 

3 25.21 6.43 26.22 6.13 26.14 6.32 20.22 12.34 19.12 12.54 
6 18.54 11.29 20.34 11.12 20.18 11.52 14.82 28.48 14.28 26.38 
9 11.65 19.42 13.76 18.76 13.28 18.74 9.54 46.33 9.44 42.33 
12 6.46 25.34 8.33 24.14 8.12 24.21 5.61 58.21 5.31 53.29 

 2.92 54.28 2.94 53.63 2.72 55.32 2.25 79.54 2.15 77.24 
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(a) Speech dataset                     (b) Traffic sign images dataset 

 

(c) Natural images dataset                  (d) Chessboard dataset 

Figure 9. The performance of CSVBNT and other NTs.  

      

(a) Chessboard data set                 (b) The result obtained by the CSVBNT. 

Figure 10. The classification result by the CSVBNT on the chessboard dataset. 
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VI. CONCLUSIONS 

This study proposes the CSVBNT based on GA. The CSVBNT tends to be optimal because its 

design takes into account how to reduce both the classification error rate and computing complexity. 

The CSVBNT is also a variable-branch neural tree because the number of output nodes in the output 

layer of each SLNN node is automatically determined by the GA according to both the classification 

error rate and computing complexity of the CSVBNT. Furthermore, this study proposes 

Design_CSVBNT (recursive), which operates similarly to the divide-and-conquer strategy for efficient 

SLNN design. Design_CSVBNT(recursive) is able to determine which node has the highest priority to 

be selected to split in the CSVBNT under the storage constraint. The experiment results in this study 

demonstrate that the CSVBNT has lower classification error rate than existing NTs when they have the 

same computing time. 
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