
 1

 Constrained-Storage Variable-Branch Neural Tree for

Classification

Shiueng-Bien Yang

Department of Digital Content of Application and Management

Wenzao Ursuline University of Languages

900 Mintsu 1st Road Kaohsing 807, Taiwan.

Tel : 886-7-3426031

E-mail: 98010@mail.wzu.edu.tw

ABSTRACT

In this study, the constrained-storage variable-branch neural tree (CSVBNT) is proposed for

pattern classification. In the CSVBNT, each internal node is designed as a single layer neural network

(SLNN) that is used to classify the input samples. The genetic algorithm (GA) is proposed to search for

the proper number of output nodes in the output layer of the SLNN. Furthermore, the growing method is

proposed to determine which node has the highest priority to split in the CSVBNT because of storage

constraint. The growing method selects a node to split in the CSVBNT according to the classification

error rate and computing complexity of the CSVBNT. In the experiments, CSVBNT has lower

classification error rate than other NTs when they have the same computing time.

Key words: Neural trees, neural network, genetic algorithm.

I. INTRODUCTION

Decision trees (DT) ([1] - [6]) are commonly used techniques in machine learning, recognition and

classification systems. The advantage of DTs is that decision nodes are easily designed and have low

computing complexity. However, the disadvantage of DTs is that the classification error rate is high

when a node is not a pure class. Therefore, large DTs are preferred to reduce the classification error rate,

and then the DTs become deep trees and low performance. Neural trees (NT) ([7]–[11]) provide a

solution for combining both decision trees and neural networks (NN), thus offering the advantages of

both DTs and NNs. Recently, NTs have been applied to the recognition of character sets [12], human

faces [13], range images [14], large pattern sets [15] and complex scenes [16].

 2

Recently, the state-of-the-art NTs have been proposed. A neural tree with multi-layer perceptron

(MLP) at the internal nodes was proposed by Guo and Gelfand [17]. In [17], the experimental results

show that the NT with MLPs allows that the mode uses a smaller number of nodes and leaves. However,

the disadvantage of NTs with MLPs is that the computing complexity is increased, since large number

of parameters to be tuned and higher risk of overfitting. In [18], the adaptive high order neural tree

(AHNT) is proposed. Nodes are high-order perceptrons (HOP) [19] whose order depends on the

variation of the global error rate. First-order nodes divide the input space with hyperplanes, while HOPs

divide the input space arbitrarily. The drawback of the AHNT is increased complexity and, thus, higher

computational cost. In [20], the MLP is used to design the neural network tree (NNTree). Instead of

using information gain ratio as splitting criterion, a new criterion is introduced for NNTree design. The

new criterion captures well the goal of reducing the classification error rate. However, the main

drawback is the necessity of an ad hoc definition of some parameters for each context and training set,

such as the number of hidden layers, number of nodes for each layer in the neural networks. Although

the NTs with MLPs previously described allow to divide the input space with arbitrary hypersurfaces,

the computing complexity of a MLP is about several times the computing complexity of the single-layer

neural network (SLNN). In [21], the single-layer perceptron tree was presented. In [22], Sirat and Nadal

presented a binary structure of NT by using the SLNNs to solve two-class problems. Foresti and

Micheloni [23] proposed a generalized neural tree (GNT), in which each node of the GNT is composed

of two parts: the SLNN, and the normalizer. The learning rule is calculated by minimizing a cost

function which represents a measure of the overall classification error of the GNT. In 2012, the balanced

neural tree (BNT) was proposed to reduce tree size and improve classification with respect to classical

neural tree [24]. The SLNN is also used to design each node in the BNT.

However, there are two common drawbacks to these state-of-the-art NTs, including the AHNT,

NNTree, GNT and BNT. First, the growth strategies of these NTs only consider how to reduce the

classification error rate, but do not consider how to reduce the computing complexity. Then, each NT is

designed as a deep and large tree-structured NT to reduce the classification error rate, which results in

 3

the need for greater computing complexity. Therefore, an optimal NT must take into account how to

reduce both the classification error rate and computing complexity when the depth or the number of

nodes is limited in NT. The next drawback of these existing NTs is that the number of output nodes in

the neural network (NN) is set to two (such as BNT) or the number of classes needed to be distinguished

(such as GNT, AHNT and NNTree). In many cases, the number of output nodes in the output layer of

NN is set to the number of classes needed to be distinguished, is not always the best stretgy to design the

NT. If the number of output node in NN is too small, the samples belonging to different classes may be

classified to the same output node in NN, and then a narrower and deeper NT will be generated.

Otherwise, the computing complexity of NN is increased when the number of output node in NN is too

many. Therefore, finding the proper number of output nodes in NN is an important research work in this

study.

Weight assignment is one of the most important factors during NN design. Basically, the weights

are controlled by both network architecture and the parameters of the learning algorithm. In addition,

using several layers and nodes in hidden layers causes the network to be much more complex. Other NN

parameters such as inputs, the number of hidden layers and their nodes, the number of memory taps and

the learning rates also affect NN performance. Genetic algorithm (GA) ([25]-[34]) has been a popular

approach to aiding neural network learning. In [30], GA is applied to the design of both NN structure

evolution and weight adaptation. Mahmoudabadi et al. optimized an NN with the Levenberg-Marquardt

(LM) and GA in order to improve its performance for grade estimation purposes [31]. Samanta et al.

applied simulated annealing for NN training [32]. Chatterjee et al. applied GA in NNs, and showed that

this combination can result in better NN performance [33]. Tahmasebi and Hezarkhani used GA to

optimize NN parameters and topology, and obtained improved results [34]. However, the above GAs

assume that the number of output nodes in an NN is known and can be set by the user in advance. This

study proposes the CSVBNT which, unlike previously applied GAs, is able to automatically generate

the proper number of output nodes in an NN. That is, when using the proposed GA, the user does not

need to set the number of output nodes of an NN in advance.

 4

The contributions of this study are summarized as follows:

(1) This study proposes the CSVBNT. To improve the first drawback of existing NTs, described above,

the CSVBNT is designed to be optimized according to both the classification error rate and

computing complexity of the CSVBNT. To fairly compare the performance of the CSVBNT and

other NTs, the storage (i.e. the number of nodes in the NTs) is constrained. Because of the storage

limitation, determining which node has the highest priority to split in the CSVBNT is an important

design issue. The experiments conducted in this research demonstrate that the CSVBNT has a lower

classification error rate than other existing NTs when they have the same computing time.

(2) To improve the second drawback of the existing NTs described above, GA is proposed to design the

SLNN for each internal node in the CSVBNT. The proposed GA has the ability to automatically

generate the weights and determine the proper number of output nodes in the SLNN according to

both the classification error rate and computing complexity of the CSVBNT. Then, the CSVBNT

tends to be optimized.

The remainder of this paper is organized as follows. The concept design of our proposed methods

is described in Section II, and the design of CSVBNT with the storage constraint is presented in Section

III. Section IV presents the design of the GA. The experiments are described in Section V, and Section

VI presents the conclusions.

II. CONCEPT DESIGN OF OUR PROPOSED METHODS

In order to understand the entire design of the CSVBNT, the following describes the concept

design of CSVBNT. The CSVBNT is a tree-structured classifier, in which each internal node is

designed as an SLNN node, and each leaf node denotes the output space. Notably, the SLNN is a fully

connected single-layer NN and each output node in the output layer of SLNN represents a branch in the

CSVBNT. The two main contributions of the CSVBNT are described below:

(1) The growth strategy of the CSVBNT is designed based on both the classification error rate and

computing complexity, and then the CSVBNT tends to be optimized. Figure 1 shows an example of

 5

the performance of two NTs, NT1 and NT2. In Fig. 1, if the depth of the NT is increased, the average

classification error rate is reduced and the average computation time is increased. From Fig. 1,

although the same classification error rate e1 can be achieved when NT1 and NT2 have sufficient

depth, NT1 still has better performance than NT2. This is because the classification error rate of NT1

is smaller than that of NT2 (e2 <e3) when they have the same computing time, t. That is, NT1

outperforms NT2 when the depth or the number of nodes is limited. This situation means that if the

storage space (i.e. the number of internal nodes in the NT) is limited, both the classification error

rate and computing complexity must be used to identify the best NT. Therefore, the growth strategy

of the CSVBNT takes into account how to reduce both the classification error rate and computing

complexity, rather than the growth strategies of other NTs that only emphasize reducing the

classification error rate.

Figure 1. An example to illustrate two NTs.

(2) The next contributions of the CSVBNT is that the proposed GA is enable to automatically search for

the proper number of output nodes for each SLNN according to both the classification error rate and

computing complexity of the CSVBNT. In the existing NTs, the number of output nodes in the

output layer of NN is usually set to the number of classes needed to be distinguished, is not always

the best growth stretgy to design the NT. Figure 2 shows a simple example to illustrate this situation.

Figure 2(a) shows the original data set consisting of three classes of samples, Fig. 2(b) shows the

partitions of the data set by the existing NTs, and Fig. 2(c) shows the corresponding tree classifier.

Initially, the data set includes the three classes of samples (“a”, “b” and “c”) in Fig. 2(a). Since the

data set has three classes of samples, the NN contained in the node 1 is then designed to have three

 6

output nodes in Fig. 2(c). Similarly, node 3 in Fig. 2(c) consists of two classes of samples, “a” and

“c”, and the NN contained in the node 3 is designed to have two output nodes to distinguish the two

classes of samples. Therefore, an input sample classified as shown in Fig. 2(c) must be calculated

with an average of two NNs. However, Fig. 2(d) shows another partition of data set, and Fig. 2(e)

shows the corresponding NT that the node 1 is designed to have four output nodes. In Fig. 2(e), the

classification of the input sample requires an average of 1.7 NNs (< 2 NNs). Thus, the NT shown in

Fig. 2(e) than the NT shown in Fig. 2(c) has a shorter computing time when they have the same

classification error rate. That is, the NN contained in the node 1 tends to be designed with four

output nodes instead of three output nodes. Since the proposed GA can find the proper number of

output nodes for the SLNN according to both the classification error rate and computing complexity

of the CSVBNT, the CSVBNT becomes a variable-branch tree classifier that tends to be optimized.

(a) Original data set. (b) Partition of the data set by the existing NTs.

(c) The existing NTs. (d) Other partition of data set.

(e) Other better NT.

Figure 2. An example to illustrate the NTs.

 7

The following describes the entire design flow of CSVBNT. In the training phase, the

Design_CSVBNT algorithm described in Section III is proposed to design the CSVBNT. Figure 3(a)

shows the flow chart of the Design_CSVBNT. In Fig. 3(a), the Design_CSVBNT algorithm is applied

to design the CSVBNT by employing the GA described in Section IV to design the SLNNs in the

CSVBNT. In the Design_CSVBNT, the number of internal nodes (SLNN nodes) denotes the storage

space required to store the CSVBNT. The Design_CSVBNT is continued to design the CSVBNT from

top to bottom until the storage space is reached. After the Design_CSVBNT is finished in the training

phase, the CSVBNT can be obtained.

Furthermore, the Design_CSVBNT(recursive) algorithm is proposed to improve the efficiency of

Design_CSVBNT in finding the best solution for the GA. The Design_CSVBNT(recursive) is a

recursive version of Design_CSVBNT, and they all use the same GA to design the SLNNs in the

CSVBNT. Figure 3(b) presents the flow chart of the Design_CSVBNT(recursive). In Fig. 3(b), the

GA_SLNN is used to employ the GA in a recursive way. In the study, the Design_CSVBNT(recursive)

instead of the Design_CSVBNT is used to generate the CSVBNT.

In the testing phase, the Test_CSVBNT algorithm described in Section III is used to explain how

the input sample travels to the CSVBNT and derives the final classification result. Fig. 3(c) shows an

example of the CSVBNT. In Fig. 3(c), the internal nodes, A, B and C, are designed as SLNNs, and the

leaf nodes, L1, L2, L3, L4, L5 and L6, are used to position the output space. Each output node in the

SLNN has a related branch in the CSVBNT. In Fig 3(c), node A consists of three branches because the

SLNNA consists of three output nodes in the output layer. Also, SLNNB and SLNNC consist of two and

three output nodes, respectively. Let the input sample be input to node A and classified to the output

node, O3, in the SLNNA. The input sample then traces the related branch of O3 and reaches node C.

Similarly, the input sample continues to be classified in the SLNNC, and reaches node L4. Finally, the

input sample is positioned in the same class as the arriving leaf node, L4. The details of the testing

algorithm, Test_CSVBNT, are described in Section III.

 8

 (a) The flow chart of the Design_CSVBNT (b) The flow chart of the Design_CSVBNT(recursive)

(c) The example of CSVBNT (○: SLNN node ●: leaf node)

Figure 3. The concept design of the CSVBNT.

 9

In order to enable readers to easily understand the proposed methods in this study, Table 1 lists the

summary of important symbols used in Sections III, IV, and V.

Table 1. Summary of symbols used in this study

Symbols Description

T CSVBNT

it
SLNN SLNN designed for the internal node,

jt

V(
jt) computing complexity of the leaf node,

jt (Eq. (1))

)(itCC computing complexity of
it

SLNN (Eq. (2))

f number of inputs in SLNN

ir number of outputs in
it

SLNN

H set of all leaf nodes in the CSVBNT, T

P(jt) probability of falling at node
jt (Eq. (3))

V(T) computing complexity of the CSVBNT, T (Eq. (3))

Class(
kX) class of training sample,

kX

jC j’th cluster

jS center of cluster
jC

jtm number of training samples contained in the node
jt

),(kj XCP probability that
kX is classified to

jC (Eq. (5))

jM output space of node
jt (Eq. (6))

)(jtR classification error rate of node
jt (Eq. (7))

R(T) classification error rate of the CSVBNT, T (Eq. (8))

)(jtλ slope of the classification error rate and computing complexity for the leaf node, jt (Eq. (9))

 storage space (Design_CSVBNT)

, ,
M variables used to record the range of solution space (Design_CSVBNT(recursive))

θ minimum solution space size (Design_CSVBNT(recursive))

LSLNN SLNN generated in the left subspace (Design_CSVBNT(recursive))

RSLNN SLNN generated in the right subspace (Design_CSVBNT(recursive))

j j’th activation threshold

jiw ,
 weight between the i’th input node and the j’th output node in the SLNN

jO value of the j’th output node in the SLNN (Eq. (11))

N population size

qRSLNN SLNN encoded by the q’th string,
qR

)(tλq
 changes in both the computing time and the classification error rate of CSVBNT after the SLNN

for node t is generated by the string,
qR (Eq. (13))

ε random value used to change the weights in the mutation phase (Eq. (15))

v(i, j) wavelet coefficient at location (i, j) in the subband (Eq. (17))

n size of the subband (Eq. (16) and Eq. (17))

Pc crossover rate

Pm mutation rate

1 2

 10

III. DESIGN OF THE CSVBNT

In the design of CSVBNT, both of the computing complexity and classification error rate of

CSVBNT are emphasized to be as small as possible. Before the design of CSVBNT is described, both of

the computing complexity and classification error rate of CSVBNT are defined in the following.

The computing complexity of CSVBNT is defined as follows. Let T denote the CSVBNT, and let

H denote the set of all leaf nodes in T, including leaf node jt . Let L(jt) denote the set of internal nodes

that are required to be calculated when the input sample travels the CSVBNT from the root node to the

leaf node jt . Then, the computing complexity of the leaf node jt , V(jt), is defined as

V(jt)= 
)L(

)(
ji tt

itCC (1)

,where)(itCC denote the computing complexity of
it

SLNN for the internal node, it . Let the
it

SLNN

contain f inputs and ir output nodes. Then, the)(itCC , is defined as

ii frtCC )(. (2)

Let P(jt) represent the probability on the training samples in the leaf node jt . The computing

complexity of T, V(T), is defined as





Ht

jj

j

tVtPTV)()()((3)

The classification error rate of CSVBNT is described as follows. Let the leaf node jt contain

jtm training samples, ff

kkkk RxxxX ),...,,(21 , for
jtmk 1 , and let Class(kX) denote the class of

training sample, kX . Let
jC = }1))(,{(

jtkk mkXClassX  be a cluster that collects the training

samples contained in the leaf node jt . Let
jS be the center of cluster

jC . The center
jS of cluster

jC

is defined as follows.

j

jt

t

m

k

k

j
m

X

S

 1 . (4)

 11

Thus, the probability that
kX is classified to

jC ,),(kj XCP , is defined as


 




Ht Kh

Kj

Kj

h
XS

XS
XCP

][

1
),(, (5)

where  denotes the Euclidean distance. Notably,),(kj XCP satisfies the constraints,

1),(0  kj XCP and 1),(
Ht

kh

h

XCP . Then, the representative of jt positioned in the output space

is given as















jt

jkk

jt

jkk

mk

CXClassX

kj

mk

CXClassX

kkj

j
XCP

XClassXCP

M

1

))(,(

1

))(,(

),(

)(),(

. (6)

Then, the classification error rate of leaf node jt ,)(jtR , is thus defined as

2

1

))(,(

))()(,()(






jt

jkk

mk

CXClassX

jkkjj MXClassXCPtR . (7)

Finally, the classification error rate of T, R(T), is defined as





Ht

jj

j

tRtPTR)()()(. (8)

In the design of CSVBNT, how to grow the tree structure of CSVBNT is described as follows.

The growing method of CSVBNT selects the best leaf node to split at a time. That is, the GA described

in Section III attempts to split each leaf node, and finds the best leaf node to branch in the CSVBNT.

The following explains how to determine which one is the best leaf node. Let the leaf node jt contain

jtm training samples. If the leaf node jt will be split in the CSVBNT, the GA is applied to these
jtm

samples to design an SLNN for the node jt . Each output node in the output layer of the SLNN dnotes

the corresponding child node of node jt . Let the tree
jtT indicate the tree T after jr child nodes,

jrjjj ttt ,2,1, ,...,, , of jt are generated by the GA. Then, the slope of the classification error rate and

 12

computing complexity for the leaf node, jt , between T and
jtT is:

)(-)(

)(-)(
)(

TVTV

TRTR

V

R
tλ

j

j

t

t

j 



 . (9)

In the growing method of CSVBNT, the best leaf node is defined as the node with the largest value in

Eq. (9). Therefore, let the set H consist of the leaf nodes in T. After each leaf node in H is designed as an

SLNN, we can obtain

)(max arg j
Ht

tλu
j

 . (10)

Then, the node ut is the best leaf node that has the highest priority to be split in T. Figure 4 shows an

example to illustrate the growing method of CSVBNT. In Fig. 4, T1 denotes the CSVBNT after the leaf

node t1 is split in T, and T2 denotes the CSVBNT after the leaf node t2 is split in T. The growing method

selects one node at a time to split in T. From Fig. 4, T2 is better than T1 because the classification error

rate of T2 is smaller than that of T1 when the computing time is the same. Thus, the aim of the design of

CSVBNT is to maximize the slope of the classification error rate and computing complexity.

Figure 4. The relation between the classification error rate and computing time in CSVBNT.

The training and testing phases of CSVBNT are described below.

Training Phase:

In the training phase, two algorithms, Design_CSVBNT and Design_CSVBNT(recursive), are

proposed to design the CSVBNT in this study. The Design_CSVBNT(recursive) is a recursive version

of Design_CSVBNT. Before describing the design of Design_CSVBNT(recursive), the

Design_CSVBNT is given as follows. Figure 3(a) also shows the flow chart of the Design_CSVBNT.

 13

Notably, the storage space is defined as the number of internal nodes of the CSVBNT in the

Design_CSVBNT.

Algorithm: Design_CSVBNT

Input: The storage speac  and the training data set.

Output: The CSVBNT with the storage constraint.

Step 1. Let the root node, t, of tree T contain all of the training samples in the training data set. Set

STORAGE= 0 and H={t}.

Step 2. While STORAGE  

Step 2.1. For each node it ∈ H and 0)(itR , perform the following.

Step 2.1.1 The GA described in Section IV is applied to the samples contained in

the node it , and then the
it

SLNN is produced for node it .

Step 2.1.2 Let the
it

SLNN contain ri output nodes in the output layer. Each

output node in the
it

SLNN denotes a child node of node, it . Calculate

the value of)(itλ as Eq. (9).

Step 2.2. Calculate)(max arg i
Ht

tλu
i

 as Eq. (10). The node, ut , is the beast leaf noode that

has the highest priority to be designed as an
ut

SLNN , and then the new CSVBNT,

ut
T , is produced. Let there be w child nodes for node ut . Delete the node ut in the

set of H and add these w new nodes to the set of H.

Step 2.3. Set T=
ut

T and STORAGE=STORAGE+1.

Step 3. Output the CSVBNT, T.

In Step 1, the root node t contains all the training samples. The set H represents a collection that

contains all nodes that can be branched in the CSVBNT. Initially, set H contains only the root node t, in

Step 1. In the first loop of Step 2, the set H={t} contains only the root node t, and then the root node t, is

selected to be designed as an tSLNN node by the GA algorithm in Step 2.1. In Step 2.2, assume that

 14

the root node t is split into three child nodes, t1, t2 and t3. Then, the set H ={t1, t2, t3} can be obtained. In

Step 2.3, the CSVBNT is built into a tree, tT , that contains only one root node and three leaf nodes, and

the STORAGE value is increased to one. Figure 5(a) shows the CSVBNT, tT , after the first loop of

Step 2 is complete. In the second loop of Step 2, the GA algorithm is applied to nodes t1, t2 and t3,

contained in H, then the three SLNN nodes
1

SLNN t ,
2

SLNN t and
3

SLNN t , and three values,)(1tλ ,

)(2tλ and)(3tλ , are produced in Step 2.1. In Step 2.2, the best node is the one with the maximal value

of λ . Assume that the value of)(1tλ is larger than both values of)(2tλ and)(3tλ . Node t1 is

selected to be designed as the
1

SLNN t built into the CSVBNT. Assume that node t1 contains two child

nodes, t11 and t12. Then, set H is updated to {t11, t12, t2, t3}. In Step 2.3, the STORAGE value is increased

to two, and the new CSVBNT tree,
1t

T , replaces tree tT . Figure 5(b) shows the CSVBNT,
1t

T , after

the second loop of Step 2 is complete. In Step 2 of each loop, the best node is selected from set H to be

designed as the SLNN node in the CSVBNT, and this step is repeated until the storage space limit is

reached.

(a) tT (b)
1t

T

Figure 5. The example illustrates the Design_CSVBNT (○: SLNN node ●: leaf node).

In this study, the Design_CSVBNT(recursive), is also proposed to improve the efficiency of the

Design_CSVBNT. The design of Design_CSVBNT(recursive) is described as follows. Figure 6 shows

the difference in calling GA to find the best SLNN between Design_CSVBNT and

Design_CSVBNT(recursive). In Step 2.1.1 of the Design_CSVBNT algorithm, the number of samples

it
m contained in node it indicates that that number of output nodes in the

it
SLNN can be up to

it
m .

 15

If the value of
it

m is large, the GA should spend more time searching for the proper number of output

nodes in the
it

SLNN from
it

m possible solutions, as shown in Fig. 6(a). To avoid the GA having to

search a large solution space to find the solution, the overall solution space can be divided into two or

more smaller subspaces in a recursive way, and then the GA can efficiently find the best solution in the

smaller subspaces. Therefore, the Design_CSVBNT algorithm can be rewritten as a recursive version,

namely Design_CSVBNT(recursive), which uses the divide-and-conquer strategy to design the SLNN

by calling the recursive algorithm GA_SLNN, as shown in Fig. 6(b). Figure 3(b) also shows the flow

chart of the Design_CSVBNT(recursive).

(a) The Design_CSVBNT

(b) The Design_CSVBN(recursive)

Figure 6. The difference in calling GA to find the best SLNN between Design_CSVBNT and

Design_CSVBNT(recursive). (: Call, : Return)

The Design_CSVBNT(recursive) algorithm is described as follows.

Algorithm: Design_CSVBNT(recursive)

Input: The storage speac  and the training data set.

Output: The CSVBNT with the storage constraint.

 16

Step 1. Let the root node, t, of tree T contain all of the training samples in the training data set. Set

STORAGE= 0 and H={t}.

Step 2. While STORAGE  

Step 2.1. For each node it in H and 0)(itR , perform the following.

Step 2.1.1 Let
it

m be the number of samples contained in the node it . Call the

GA_SLNN(=2, =
it

m) to obtain the
it

SLNN for the leaf node it .

Step 2.1.2 Let the
it

SLNN contain ri output nodes in the output layer. Each

output node in the
it

SLNN denotes a child node of the node, it .

Calculate the value of)(itλ as Eq. (9).

Step 2.2. Calculate)(max arg i
Ht

tλk
i

 as Eq. (10). The node, kt , is the beast leaf noode that

has the highest priority to be designed as an
kt

SLNN , and then the new CSVBNT,

ktT , is produced. Let there be w child nodes for the node kt . Delete the node kt in

the set of H and add these w new nodes to the set of H.

Step 2.3. Set T=
ktT and STORAGE=STORAGE+1.

Step 3. Output the CSVBNT, T.

Algorithm: GA_SLNN (Input: ,Input:)

Step 1. If   12 , then GA is applied to these
it

m samples contained in the leaf node it , to

design the
it

SLNN whose number of output nodes in the output layer is within the range

[]. Set Best_SLNN=
it

SLNN and Best_Fit= the value of the best fitness.

Return both the Best_SLNN and Best_Fit. End.

Step 2. If   12 , do the following.

Step 2.1 Calculate 






 


2

12 
M .

1 2

1 2

21 , 

 17

Step 2.2 Call GA_SLNN(, M -1). Then, both the LSLNN and Best_FitL can be

obtained.

Step 2.3 Call GA_SLNN(M ,). Then, both the RSLNN and Best_FitR can be

obtained.

Step 3. If Best_FitR > Best_FitL Then Best_SLNN= RSLNN and Best_Fit= Best_FitR.

Otherwise Best_SLNN= LSLNN and Best_Fit= Best_FitL.

Return both the Best_SLNN and Best_Fit. End.

In Step 2.1.1 of Design_CSVBNT(recursive), GA_SLNN(=2, =
it

m) is a recursive algorithm.

After calling the GA_SLNN(=2, =
it

m), the
it

SLNN with the number of output nodes within the

range [=2, =
it

m] can be generated by the GA. Notably, two classes (=2) are the minimum

number of classes that need to be distinguished, and the maximal number of output nodes in
it

SLNN is

equal to mt (=
it

m) such that each sample is regarded as the only member of its own class. Therefore,

the
it

SLNN generated by the GA still tends to be optimal because the GA has a global search within

the range [2, mt].

In Step 1 of the GA_SLNN, if the range of the solution space, [,], is small, the GA is

directly used to design the SLNN with the number of output nodes in the output layer within the range

[]. Then, the GA_SLNN returns both the best SLNN and the maximal fitness value generated by

the GA. In the Step 2 of the GA_SLNN, if the range of the solution space, [,], is large, the

solution space, [,], is divided into two subspaces, [, M -1] and [M ,], in a recursive way.

That is, the GA is used to design the SLNNs in these two subspace, [, M -1] and [M ,], instead

of the whole solution space, [,]. In Step 3, the GA_SLNN returns both of the variables,

Best_SLNN and Best_Fit, recording the best SLNN and the maximal value of the fitness generated by

GA in these two subspaces, respectively.

1

2

1 2

1 2

1 2 1

2

1 2

21 , 

1 2

1 2 1 2

1 2

1 2

 18

Notably, in the GA_SLNN, the threshold θ is not a critical value for users. If the threshold θ

is small, the overall solution space can be divided into smaller (or more) subspaces, and then the GA can

efficiently find the best solution in the smaller subspaces. Otherwise, the solution space will be cut into

larger (or fewer) subspaces. However, if the threshold θ is large enough, the Step 1 will only be

performed in GA_SLNN, and then Design_CSVBNT(recursive) and Design_CSVBNT become the

same algorithm.

After the training phase is finished, the CSVBNT can be obtained. In the CSVBNT, each leaf node

is used to position the output class of the input samples. However, once there will be many different

classes of training samples classified to the same leaf node in the training phase. Then, the output class

representing a leaf node is defined as the class to which the largest number of training samples belongs

in the leaf node.

Testing Phase:

The testing algorithm, Test_CSVBNT, is proposed to classify an input sample in the CSVBNT.

Before the Test_CSVBNT is given, the following describes how to classify an input sample in the

tSLNN for the internal node t. Let the tSLNN contain f inputs and tr output nodes. The values of

j for 0< j <1, trj 1 denote the activation thresholds. The values of jiw , for 0< jiw , <1,

fi 1 , and trj 1 , indicate the weights between the input and output layers. Let the sample,

ff

kkkk RxxxX ),...,,(21 , be the input to the tSLNN . In the tSLNN , the value of the jth output node,

jO , is the sum of its weighted inputs as follows.

j

f

i

i

kijj xwO  


)(
1

, trj 1 (11)

Let

}1 max{ arg tj rjOu  . (12)

The input sample, kX , is then classified to the uth output node in the tSLNN .

 19

The Test_CSVBNT algorithm is given as follows.

Algorithm: Test_CSVBNT

Input: The input sample ff

kkkk RxxxX ),...,,(21 and tree classifier, CSVBNT.

Output: The class of kX .

Step 1. Let t be the root node of the CSVBNT.

Step 2. While t is not a leaf node

Step 2.1. The input sample, kX , is the input to the tSLNN . Calculate the values, jO , for

trj 1 , as Eq. (11).

Step 2.2. Calculate }1 max{ arg tj rjOu  as Eq. (12).

Step 2.3. The input sample, kX , is classified to the uth output node in the tSLNN . Then, the

input sample, kX , towards the corresponding child node, ut , of the node, t , in the

CSVBNT.

Step 2.3. Set t = ut

Step 3. Output the representative class of node t .

IV. DESIGN OF THE GA

There are two design issues for the GA. First, the GA searches for the weights in the SLNN. Next,

the GA can automatically search for the proper number of output nodes in the output layer of the SLNN

based on the classification error rate and computing complexity of CSVBNT. Let T be the CSVBNT,

and let t be the node that contains tm input samples in T. The main goal of GA is to design the SLNN

for node t. Each output node in the output layer of the SLNN is designed as a corresponding child node

of node t, in the CSVBNT. The GA is designed based on the genetic algorithm, which includes the

initialization step and three phases: reproduction, crossover, and mutation. They are described as

follows.

 20

Initialization

In the initialization step of GA, a population of N strings, NRRR ,...,, 21 , is randomly generated.

The length of each string is set to be smaller than, or equal to, the value of tm , i.e. the length of each

string is variant in GA. That is, the number of child nodes of node t generated by the GA is within the

range [2, tm]. Let the string
qR encode the

qRSLNN , which has f inputs and
qRr output nodes, for

Nq 1 . The values of j denote the j’th activation thresholds for 0< j <1,
qRrj 1 . The values

of jiw , indicate the weights between the input and output layers for 0< jiw , <1, fi 1 and

qRrj 1 . The string qR then encodes the
qRSLNN , as follows.

qR =(O_nodeq(1),O_nodeq(2),…, O_nodeq(
qRr))

, where O_nodeq(j)=(j , 11w ,…, jfw), for
qRrj 1 .

The following is an example of the initialization step. Let there be two elements (f=2) for each

input sample, and let
qRr =3 be a random value generated within [2, tm]. qR then encodes the solution

as follows.

qR =(1 , 11w , 12 w , 2 , 12w , 22 w , 3 , 13w , 32 w)

=(O_nodeq(1), O_nodeq(2), O_nodeq(3))

,where O_nodeq(1)=(1 , 11w , 12 w), O_nodeq(2)=(2 , 12w , 22 w), and O_nodeq(3)=(3 , 13w , 32 w). Figure. 7

also shows the corresponding
qRSLNN encoded by the string qR .

Figure 7. The corresponding
qRSLNN encoded by the string qR .

 21

Reproduction:

In the reproduction phase, the definition of fitness depends on both the classification error rate and

computing complexity of the CSVBNT. The following describes the definition of fitness for the string

qR . Before the fitness of string
qR is defined, the following describes how to classify a training sample

in the
qRSLNN . Let ff

kkkk RxxxX ),...,,(21 be a sample contained in node t. In the
qRSLNN , the

values, j

f

i

i

kijj xwO  


)(
1

, for
qRrj 1 , are calculated according to Eq. (11), and the value of

}1 max{ arg
qRj rjOu  is calculated via Eq. (12). Sample kX is then classified to the uth

output node in the
qRSLNN . After all of these tm training samples contained in node t have been

classified to these
qRr output nodes, the training samples classified to the same output nodes can be

collected to be designed as child nodes of t. That is,
qRr child nodes

qRttt ,...,, 21 of node t are generated

based on these
qRr output nodes in the

qRSLNN . Let the tree T  indicate the tree T after the
qRr

child nodes of node t have been generated. The fitness function of string qR is then defined as:,

Fitness(
qR)=)(tλq , for Nq 1 , (13)

where)(tλq is defined in Eq. (9) as representative of changes in both the computing time and the

classification error rate of CSVBNT.

After the fitness values of these N strings, NRRR ,...,, 21 , in the population have been obtained, the

probability of each string being selected for the next generation can then be calculated as follows:

Prob(qR)=




N

l

l

q

t

t

1

)(

)(




, for Nq 1 . (14)

Notably, Prob(qR) satisfies 1)(0  qRProb for Nq 1 , and 1)(
1




N

q

qRProb . In the reproduction

phase, the reproduction operator selects N strings as the new population in the next generation according

 22

to the probability values, Prob(
qR) for Nq 1 .

The following shows an example of the reproduction phase. Let there be five probability values,

Prob(1R)=0.2, Prob(2R)=0.15, Prob(
3R)=0.1, Prob(4R)=0.15 and Prob(

5R)=0.4, for five strings,
qR

for 51  q , in the population. Figure 8 shows the distribution of these five probability values in the

range [0, 1]. In the reproduction phase, the reproduction operator generates five random values within [0,

1] such as 0.15, 0.3, 0.5, 0.7 and 0.9, to determine which strings are selected for the next generation.

From Fig. 8, the reproduction operator selects 1R , 2R , 4R , 5R , and 5R , to be the new population in

the next generation. Notably, the string 5R is selected twice and 3R is omitted. The meaning of the

reproduction phase is that the string with higher fitness has a greater probability of being repeatedly

selected and the strings with lower fitness may be removed in the next generation.

Prob(1R)=0.2 Prob(2R)=0.15 Prob(3R)=0.1 Prob(4R)=0.15 Prob(5R)=0.4

 0 0.2 0.35 0.45 0.6 1

 0.15 0.3 0.5 0.7 0.9

Figure 8. The distribution of five probability values in the range, [0. 1].

Crossover:

In the crossover phase, the crossover operator is applied to the population of N strings. Then, a pair

of strings, xR and yR , is selected to do crossover operator. Then, two random integers, a and b, are

generated to determine which pieces of the strings are to be interchanged. Notably, if the number of

output nodes contained in the string is outside the range [2, mt] after the crossover operator is completed,

the two values, a and b, should be randomly generated again. After the crossover operator is finished,

two new strings, xR̂ and yR̂ , replace the strings, xR and yR , in the population. The significance of

the crossover phase is that it exchanges the output nodes including the connected weights between

different strings, to yield various neural networks.

The following shows an example of the crossover phase. Let there be two elements (f=2) for each

sample. Let 1R contain three output nodes, and let 2R contain four output nodes. Then, after the

 23

crossover operator with two random integers (a=1 and b=2) is applied to the pair of strings, 1R and

2R , two new strings,
1R̂ and

2R̂ , are generated in the next generation.

 a=1

1R = ())2(_),1(_ 11 nodeOnodeO

, where

O_node1(1)=(1 , 11w , 21w),

O_node1(2)=(2 , 12w , 22w).

b=2

2R =())3(_),2(_),1(_ 222 nodeOnodeOnodeO

, where

O_node2(1)=(1 , 11w , 21w),

O_node2(2)=(2 , 12w , 22w),

O_node2(3)=(3 , 13w , 23w).

After the crossover operator is applied to 1R and 2R , two new strings, 1R̂ and 2R̂ , are generated as

follows.

1R̂ = ()2(_),1(_ 22 nodeOnodeO ,))2(_ 1nodeO

2R̂ = ()1(_ 1nodeO ,))3(_ 2nodeO

Mutation:

In the mutation phase, the weights of the strings in the population are randomly chosen with a

probability. Each chosen weight is added by the multiplication of the chosen weight and a random value

(0<ε<1). The following shows an example of the mutation phase. Let 1R be presented as follows:

1R = ())2(_),1(_ 11 nodeOnodeO ,

where

O_node1(1)=(1 , 11w , 21w),

O_node1(2)=(2 , 12w , 22w).

 24

If the weight w11 is chosen to perform the mutation, the new weight w’11 replaces weight w11 as follows:

w’11= w11±w11 *ε, (15)

where the value, ε, is a random value within the range [0, 1]. After the mutation phase, the new string

can be obtained and replace the original string.

The user may specify the number of generations over which to run in the GA. Suppose that the

string
xR̂ with the best fitness generates the SLNN with xr̂ output nodes. Then, xr̂ child nodes of

node t are generated in T, according to these xr̂ output nodes contained in the SLNN.

V. EXPERIMENTS

A. Experimental setting

In the experiments, the Design_CSVBNT(recursive) algorithm is used to design the CSVBNT

with the storage constraint. The proposed CSVBNT is compared with other NTs under the same number

of internal nodes. A run of twenty times is carried out for accurately proposing the results of the

CSVBNT and other NTs. In our proposed methods, the threshold,
10

it
m

 , is applied to the GA_SLNN

since the one-tenth size of the overall solution space is sufficiently small for the GA to efficiently find

the best solution. Also, the parameters used in the GA are as follows: population of 300, crossover rate,

Pc = 80%, and mutation rate, Pm = 5%. Five hundred generations are run in the GA, and the best

solution is retained. All the experiments are carried out on personal computers.

Four data sets: speech, traffic sign images, natural images, and chessboard data sets are used to test

the CSVBNT and other NTs in the experiments. These four data sets are described as follows.

(1) In the speech data set, the ISOLET database using the 26 letters of the English alphabet is used in

the isolated word recognition test. The speech data set consists of 6240 utterances including 4000

training utterances and 2240 testing utterances, from 120 speakers. Each utterance is sampled at 16

kHz with a 16-bit resolution. A Hamming window of 20 ms with 50% overlap is used to process

each utterance further by Fast Fourier Transform (FFT). Each utterance is divided into 15 Hamming

windows, with each represented by 32 FFT coefficients; that is, each utterance consists of 480

 25

features.

(2) The traffic sign images data set is obtained from the GTSRB database [35]. The training set consists

of 5000 images, and the other 5000 images are used to test the methods in our experiments. All

images belong to forty classes. The actual traffic sign is not always centered within the image; its

bounding box is part of the annotations. We crop all the images and process them only within the

bounding box, and resize them to achieve square bounding boxes. All traffic sign images are resized

to 48x48 pixels.

(3) The natural images of 32x32 pixels are obtained from the CIFAR10 database [36]. The CIFAR10

database consists of ten classes of images, each with 5000 training images and 1000 testing images.

Images vary greatly within each class. They are not necessarily centered, and may contain only parts

of the object, and show different backgrounds.

(4) The symmetrically distributed four-class chessboard data set is used to test the CSVBNT and other

current methods. Figure 4(a) shows the chessboard data set that consists of 400 patterns equally

distributed among four classes. A five-fold cross-validation is performed, and average results are

presented.

In both the traffic sign and natural images data sets, all color images should be transformed into

the gray images in the experiments. Then, each image is divided into blocks of 16×16 pixels. Each block

is then transformed by a Haar wavelet transform [37] to obtain four subbands. The mean values (mv)

and standard deviations (sd) of the four subbands are calculated as follows:





n

ji

jiv
n

mv
1,

2
),(

1
, (16)

 
2

1,
2

),(
1




n

ji

mvjiv
n

sd , (17)

where n denotes the size of the subband, which is set to 8 in this experiment, and v(i, j) denotes the

wavelet coefficient at location (i, j) in the subband. Therefore, each block, which contains four subbands,

can be represented by a feature vector with eight values since each subband is associated with two

values, sd and mv.

 26

B. Performance of CSVBNT

Before testing the performance of CSVBNT, the sensitivity of these two parameters, Pc and Pm ,

in the GA is described as follows. If Pc is set to 50%, the GA requires twice the number of generations

to get a similar or poor solution in four data sets, compared with when Pc is set to 80% or 90%. This is

because the use of a too small Pc will affect the efficiency of the GA. Also, when the probability Pm is

set to less than 10%, the GA can obtain similar results under the same number of generations. However,

if Pm is set to 15%, the GA usually does not converge. This is because the strings are changed too much

in the GA, so that the GA cannot converge to a solution. Therefore, both parameters, Pc = 80% and Pm

= 5%, are applied to the GA in the experiments.

In Table 2, the different storages of  are used to design the CSVBNT on four datasets. In this

study, the storage is defined as the number of internal nodes in the CSVBNT. Notably, because each

internal node contains an SLNN, the storage, , also denotes the total number of SLNNs dsigned in the

CSVBNT. In Table 2, the “Num_O” denotes the average number of child nodes of an internal node (or

the average number of output nodes in the output layer of an SLNN), the “DEP” denotes the average

depth of the CSVBNT, and the “CER” denotes the average classification error rate on the training

dataset. The classification error rate is defined as Eq. (8). When the value of  is set to , it represents

that the storage space is unlimited, and then the CSVBNT is grown until the classification error rate is

less than a small threshold  ( = 2%), or the training error rate exhibits no obvious decrease.

In the experiments, the proposed CSVBNT is compared with four NTs: GNT [23] , AHNT [18],

NNTree [20] and BNT [24]. To fairly compare our proposed CSVBNT and other NTs, the CSVBNT

and other NTs have the same storage space (i.e., the same number of internal nodes) in the experiment.

In Table 3, the “TIME” denotes the average computing time for a testing sample, and the “CER”

denotes the average classification error rate on the testing dataset. In Table 3, we observe that both of

the AHNT and NNTree than the proposed CSVBNT have lower classification error rate when the

storage space is the same. The reason is that the MLP allows to divide the input space with arbitrary

hypersurfaces in the AHNT and NNTree. That is, if the distribution of samples contained in the node is

 27

complex (non-linear distribution), the node is preferred in designing an MLP, and then the classification

error rate of both the AHNT and NNTree can be decreased. However, we also observe that both of the

AHNT and NNTree using the MLPs than the CSVBNT using the SLNNs take more computing time

when they have the same storage in Table 3. The reason is that the SLNN than the MLP has lower

computing complexity. The computing complexity of an MLP is usually larger than twice the

computing complexity of the SLNN.

Figure 9 shows the experimental results proposed in Table 3, and Figure 10 shows the

classification results obtained by the CSVBNT on the chessboard data set. From Fig. 9, we observe that

the CSVBNT than other NTs has lower classification error rate when they have the same computing

time. Two reasons are offered as follows. (1) The proposed growing strategy designs the CSVBNT

according to the classification error rate and computing complexity of CSVBNT, while the other NTs

including GNT, AHNT, NNTree and BNT, only consider the reduction of the classification error rate. (2)

The GA is capable of searching for the proper number of output nodes in the SLNN according to the

classification error arte and computing complexity of CSVBNT. Figures 1 and 2 has shown that the

characteristics of the CSVBNT differ from those of other NTs.

Table 2. The efficiency of the CSVBNT on the training datasets.

Data

Sets
 Num_O DEP

CER

(%)

Speech

5 3.25 3.43 22.36

8 3.18 5.25 12.37

11 3.25 7.46 8.29

14 3.25 8.35 4.21

 3.33 14.25 1.52

Traffic

sign

images

5 5.35 3.43 21.42

8 5.52 5.54 16.32

11 5.53 6.34 8.74

14 5.54 8.25 3.27

 5.52 13.78 1.39

Natural

images

5 2.44 3.36 25.43

8 2.64 4.46 18.48

11 2.52 6.64 13.35

14 2.56 8.63 7.62

 2.67 12.38 1.78

Chess-

board

3 2.00 3.47 18.35

6 2.00 4.53 13.48

9 2.00 5.35 7.48

12 2.00 7.45 3.49

 2.00 10.58 1.92

 28

Table 3. The performance the CSVBNT and other NTs on the testing datasets

Data

Sets


CSVBNT GNT [23] BNT [24] NNTree [20] AHNT [18]

CER

(%)

TIME

(sec)

CER

(%)

TIME

(sec)

CER

(%)

TIME

(sec)

CER

(%)

TIME

(sec)

CER

(%)

TIME

(sec)

Speech

5 27.42 5.52 32.18 5.43 31.28 5.13 24.52 13.37 22.22 11.63
8 18.64 10.72 21.52 10.52 21.35 11.18 14.32 20.38 13.26 18.34
11 12.23 18.15 16.12 17.85 15.27 18.33 10.35 32.48 9.29 28.25
14 6.32 25.22 8.62 23.32 8.31 25.36 5.33 48.37 4.3 42.23

 2.12 47.85 2.62 43.43 2.53 45.43 2.11 65.83 2.08 59.32

Traffic

sign

images

5 25.42 6.33 28.32 6.13 27.33 6.25 21.42 13.31 18.24 13.13
8 19.12 11.24 21.44 10.34 21.65 11.34 14.21 24.45 13.51 23.25
11 13.14 18.37 16.32 16.64 16.21 17.24 8.53 39.42 8.33 37.52
14 7.42 25.38 9.82 22.32 9.63 23.33 4.72 58.34 4.42 54.84

 2.19 48.12 2.52 47.32 2.31 51.52 1.91 68.32 1.86 64.52

Natural

images

5 33.42 6.38 34.22 6.22 34.12 7.42 31.51 14.32 31.31 13.22
8 25.84 12.92 27.82 12.44 27.27 12.94 21.85 29.34 21.52 28.35
11 18.65 19.66 20.42 18.42 20.22 21.23 14.36 41.23 13.26 40.13
14 12.82 26.32 15.95 25.73 15.52 27.74 9.82 60.44 9.32 57.4

 3.19 58.27 3.29 57.32 3.21 61.35 2.42 78.33 2.12 73.3

Chess-

board

3 25.21 6.43 26.22 6.13 26.14 6.32 20.22 12.34 19.12 12.54
6 18.54 11.29 20.34 11.12 20.18 11.52 14.82 28.48 14.28 26.38
9 11.65 19.42 13.76 18.76 13.28 18.74 9.54 46.33 9.44 42.33
12 6.46 25.34 8.33 24.14 8.12 24.21 5.61 58.21 5.31 53.29

 2.92 54.28 2.94 53.63 2.72 55.32 2.25 79.54 2.15 77.24

 29

(a) Speech dataset (b) Traffic sign images dataset

(c) Natural images dataset (d) Chessboard dataset

Figure 9. The performance of CSVBNT and other NTs.

(a) Chessboard data set (b) The result obtained by the CSVBNT.

Figure 10. The classification result by the CSVBNT on the chessboard dataset.

 30

VI. CONCLUSIONS

This study proposes the CSVBNT based on GA. The CSVBNT tends to be optimal because its

design takes into account how to reduce both the classification error rate and computing complexity.

The CSVBNT is also a variable-branch neural tree because the number of output nodes in the output

layer of each SLNN node is automatically determined by the GA according to both the classification

error rate and computing complexity of the CSVBNT. Furthermore, this study proposes

Design_CSVBNT (recursive), which operates similarly to the divide-and-conquer strategy for efficient

SLNN design. Design_CSVBNT(recursive) is able to determine which node has the highest priority to

be selected to split in the CSVBNT under the storage constraint. The experiment results in this study

demonstrate that the CSVBNT has lower classification error rate than existing NTs when they have the

same computing time.

 31

Disclosure of Potential Conflicts of Interest

Shiueng-Bien Yang is the corresponding author of this manuscript titled " Constrained-Storage

Variable-Branch Neural Tree for Classification". He declare that there is no conflict of interest in

this manuscript.

 32

REFERENCES

[1] Gelfand,S. B., Ravishankar,C. S., and Delp, E. J. (1991). an Iterative Growing and Pruning Algorithm for

Classification Tree Design. IEEE Trans. Pattern Analysis and Machine Intell., 13(2), 163-174.

[2] Yildiz, O. T. and Alpaydin, E. (2001). Omnivariate Decision Trees. IEEE Trans. Neural Network, 12(6),

1539-1546.

[3] Zhao, H. and S. Ram (2004). Constrained Cascade Generalization of Decision Trees. IEEE Trans.

Knowledgement and data Engineering, 16(6), 727-739.

[4] Gonzalo, M. M. and Alberto, S. (2004). Using All Data to Generate Decision Tree Ensembles. IEEE Trans.

Systems, Man, Cybernetics, C, Applications and Reviews, 34(4), 393-397.

[5] Witold, P. and Zenon, A. S. (2005). C-fuzzy Decision Trees. IEEE Trans. Systems, Man, Cybernetics, C,

Applications and Reviews, 35(4), 498-511.

[6] Wang, X. B. Chen, G. Q., and Ye, F. (2000). On the Optimization of Fuzzy Decision Trees. Fuzzy Sets and

Systems, 112(3), 117-125.

[7] Deffuant, G., Neural units recruitment algorithm for generation of decision trees., Proceedings of

the international joint conference on neural networks, 1 (1990) 637–642.

[8] Lippmann, R., An introduction to computing with neural nets., IEEE Acoustics, Speech, and Signal

Processing Magazine. 4(2) (1987) 4–22.

[9] Sankar, A., & Mammone, R., Neural tree networks. In Neural network: theory and application, San

Diego, CA, USA: Academic Press Professional, Inc. 1992, pp. 281–302.

[10] Sethi, I. K. and Yoo, J., Structure-driven induction of decision tree classifiers through neural

learning, Pattern Recognition. 30(11) (1997) 1893–1904.

[11] Sirat, J., & Nadal, J., Neural trees: a new tool for classification, Neural Network. 1 (1990) 423–

448.

[12] T. Li, Y. Y. Tang, and F. Y. Fang, A structure-parameter-adaptive (SPA) neural tree for the

recognition of large character set, Pattern Recognit. 28(3) (1995) 315–329.

[13] M. Zhang and J. Fulcher, Face recognition using artificial neural networks group-based adaptive

tolerance (GAT) trees, IEEE Trans. Neural Networks. 7 (1996) 555–567.

[14] G. L. Foresti and G. G. Pieroni, Exploiting neural trees in range image understanding, Pattern

Recognit. Lett. 19(9) (1998) 869–878.

[15] H. H. Song and S.W. Lee, Aself-organizing neural tree for large set pattern classification, IEEE

 33

Trans. Neural Networks. 9 (1998) 369–380.

[16] G. L. Foresti, Outdoor scene classification by a neural tree based approach, Pattern Anal. Applic. 2

(1999) 129–142.

[17] H. Guo and S. B. Gelfand, Classification trees with neural networks feature extraction, IEEE

Trans. Neural Networks. (1992) 923–933.

[18] G. L. Foresti, An adaptive high-order neural tree for pattern recognition, IEEE Trans. Systems, man,

cybernetics-part B: cybernetics. 34 (2004) 988-996.

[19] G. L. Giles and T. Maxwell, Learning, invariance, and variable-branchization in high-order neural

networks, 26 (1987) 4972–4978.

[20] P. Maji, Efficient design of neural network tree using a single spilitting criterion, Nerocomputing.

71 (2008) 787–800.

[21] P. E. Utgoff, Perceptron tree: a case study in hybrid concept representation, Proc. VII Nat. Conf.

Artificial Intelligence. (1998) 601–605.

[22] J. A. Sirat and J. P. Nadal, Neural tree: a new tool for classification, Network. 1 (1990) 423–438.

[23] G. L. Foresti and C. Micheloni, Generalized neural trees for pattern classification, IEEE Trans.

Neural Networks. 13 (2002) 1540–1547.

[24] C. Micheloni, A. Rani, S. Kumarb, G. L. Foresti, A balanced neural tree for pattern classification,

Neural Networks. 27 (2012) 81-90.

[25] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:

Addison-Wesley, 1989.

[26] J. Koza, Genetic Programming. Cambridge, MA: MIT Press, 1992.

[27] S. Grossberg, Ed., Neural Networks and Natural Intelligence. Cambridge, MA: MIT Press, 1988.

[28] D. Rumelhart and J. McClelland, Eds., Parallel Distributed Processing: Explorations in

Microstructure of Cognition. Cambridge, MA: MIT Press, 1986.

[29] J. M. Zurada, Ed., Introduction to Neural Systems. St. Paul, MN:West, 1992.

[30] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algorithm that constructs

 34

recurrent neural networks,” IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 54–64, Jan. 1994.

[31] Mahmoudabadi H., Izadi M., Menhaj M.B. A hybrid method for grade estimation using genetic

algorithm and neural networks. Computational Geosciences. 2009;13:91–101.

[32] Samanta B., Bandopadhyay S., Ganguli R. Data segmentation and genetic algorithms for sparse

data division in Nome placer gold grade estimation using neural network and geostatistics. Mining

Exploration Geology. 2004;11(1–4):69–76.

[33] Chatterjee S., Bandopadhyay S., Machuca D. Ore grade prediction using a genetic algorithm and

clustering based ensemble neural network model. Mathematical Geosciences. 2010;42(3):309–326.

[34] Tahmasebi P., Hezarkhani A. IAMG09. Stanford University; California: 2009. (Application of

Optimized Neural Network by Genetic Algorithm).

[35] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The German Traffic Sign Recognition

Benchmark: A multi-class classification competition. In International Joint Conference on Neural

Networks, 2011.

[36] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Computer

Science Department, University of Toronto, 2009.

[37] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison–Wesley, Boston, MA, 1992.

