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Abstract

Multistage vector quantization (MSVQ) and their variants have been recently proposed. Before MSVQ is designed, the user must artificially
determine the number of codewords in each VQ stage. However, the users usually have no idea regarding the number of codewords in each VQ
stage, and thus doubt whether the resulting MSVQ is optimal. This paper proposes the genetic design (GD) algorithm to design the MSVQ.
The GD algorithm can automatically find the number of codewords to optimize each VQ stage according to the rate–distortion performance.
Thus, the MSVQ based on the GD algorithm, namely MSVQ(GD), is proposed here. Furthermore, using a sharing codebook (SC) can further
reduce the storage size of MSVQ. Combining numerous similar codewords in the VQ stages of MSVQ produces the codewords of the sharing
codebook. This paper proposes the genetic merge (GM) algorithm to design the SC of MSVQ. Therefore, the constrained-storage MSVQ using
a SC, namely CSMSVQ, is proposed and outperforms other MSVQs in the experiments presented here.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Vector quantization (VQ) [1,2] is an effective technique for
data compression and coding, especially image and speech cod-
ing. The codebook design is the key issue for VQ. Different VQ
schemes are compared based on rate–distortion performance.
Residual vector quantization (RVQ) is a simple constrained-
storage vector quantizer (CSVQ) and a type of multiple stage
vector quantization (MSVQ). In Refs. [3–13], MSVQ and its
variants were proposed. Fig. 1 shows the basic structure of
MSVQ, which consists of p VQ stages. Each VQ stage is re-
garded as a codebook, which quantizes the input vector. The
input vector x is encoded in MSVQ. Initially, x(0) is set to
x. x(0) then is first quantized to generate the approximation
C(1) by the first VQ stage. The residual vector, x(1), is then
calculated by x(1) = x(0) − C(1). x(1) serves as the input to
the next VQ stage. Let MSVQ consist of zi codewords in the
ith VQ stage. After x is encoded in MSVQ, the reconstructed
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vector, y, of x is y = ∑p
i=1C

(i) and the code length required
for representing x is

∑p
i=1 log zi . The advantage of the p-stages

MSVQ is that it is capable of uniquely representing
∏p

i=1zi

vectors with only
∑p

i=1zi codewords required for storage.
The users must determine the number of codewords or the

rate for each VQ stage before MSVQ is designed. However,
the users usually have no idea of the number of codewords
for each VQ stage to achieve the optimal coding of MSVQ
under a total rate constraint. In Ref. [12], the pairwise nearest-
neighbor (PNN) design algorithm was proposed to design the
residual vector quantizers by merging the pair of stage clusters
that minimizes the increase in overall distortion resulting from
a given decrease in entropy. Thus, the number of codewords
in each VQ stage can be automatically determined according
to the rate–distortion performance. However, the PNN design
algorithm only merges similar codewords from the same VQ
stage, and does not measure the similarity of codewords from
different VQ stages. To improve further the coding performance
of MSVQ, MSVQ allows each VQ stage to comprise any
desired subset of codewords in a universal codebook, namely
the CSVQ with a universal codebook, which was introduced
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Fig. 1. The structure of the traditional MSVQ and MSVQ(GD).

in Ref. [13]. That is, if the probability density functions are
sufficiently similar, then the coding performance with shared
codebooks rival that using separate codebooks. In Ref. [13], the
Linde–Buzo–Gray (LBG) algorithm [14] is first applied to the
training data set to obtain the initial universal codebook. Start-
ing with an initial universal codebook and an initial selector
function, an iterative algorithm closely related to the LBG algo-
rithm was used to design the universal codebook of CSVQ. In
Ref. [15], MSVQ was used for the application of partial image
retrieval from a huge number of images. The LBG algorithm
was also applied to design the codebooks in Ref. [15]. In Ref.
[16], the channel-optimized MSVQ (CO-MSVQ) was proposed
to reconstruct the speech signal. They employed the modified
LBG algorithm to design the CO-MSVQ encoder, and found
that the perceptual quality of speech reconstructed using CO-
MSVQ is better than that obtained using the channel-matched
MSVQ (CM-MSVQ) proposed in Ref. [17]. In Ref. [18], a
novel multipurpose image watermarking algorithm based on
MSVQ. Their proposed algorithm can be applied to image au-
thentication and copyright protection. The LBG algorithm was
also used to design the VQ encoder in Ref. [18]. Lahouti [19]
explored redundancy in the output of MSVQ, and presented an
approximate minimum mean squared error (MMSE) technique
for reconstructing MSVQ-encoded sources transmitted over a
noisy channel. Similarly, the LBG algorithm was applied to
design the encoders in MSVQ. However, Selim [20] showed
that the LBG algorithm fails to converge to a local minimum
under certain conditions. The primary drawback in CSVQ is
described as follows. The users must input the rate for each
source to the LBG algorithm before designing CSVQ. How-
ever, the users cannot easily determine the appropriate rate (or
number of codewords) for each source when the total rate is
given as a constraint in the system of Ramakrishnan [13]. Pan
[21] proposed the genetic algorithms employed in designing
the codebook. These genetic algorithms perform significantly
better than the LBG algorithm. Begum [22] proposed a new
wavelet-domain codebook design algorithm, which uses the ge-
netic algorithm to determine the goodness of the clusters to
design the codebook. This approach is similar to that of the
LBG algorithm. However, Begum’s algorithm [22] differs from
the LBG in cluster formation. Sun [23] combined the principal
component analysis and genetic algorithm to design the code-
book. Experimental results show that the proposed method out-
performs the LBG algorithm. Some genetic algorithms [21–23]
outperform the LBG algorithm in the design of the codebook.
However, the common disadvantage of these genetic algorithms
is that the users must provide the codebook size before the
genetic algorithms are used to design the codebook. Users
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Fig. 2. The rate–distortion performance of MSVQ.

generally have no idea about the optimal codebook size. A large
codebook size results in a high coding rate is increased. Oth-
erwise, the coding quality is reduced when a small codebook
size is set. Thus, the codebooks designed in Refs. [21–23] are
not optimal.

This paper makes two main contributions. First, this pa-
per proposes MSVQ based on the genetic design (GD) al-
gorithm, namely MSVQ(GD). The structure of the proposed
MSVQ(GD) is the same as that of the traditional MSVQ. The
GD algorithm is a genetic algorithm that automatically searches
for the optimal number of codewords at each VQ stage ac-
cording to the rate–distortion performance. Fig. 2 shows an ex-
ample to illustrate the rate–distortion performance of MSVQ.
Let the M be the MSVQ with (k − 1) stages, and the code-
book at the kth VQ stage begins to be designed to produce the
MSVQ with k-stages. Let M1 and M2 be two MSVQs with
k- stages, which have different numbers of codewords at the
kth VQ stage. Fig. 2 indicates that the MSVQ M2 outperforms
the MSVQ M1 in. The reason is that the quality of M2, has a
lower distortion than that of M1, at the same coding rate. Both
the rate and distortion of MSVQ are depended on the design
of codebook at each VQ stage. The users should determine the
codebook size (the number of codewords) when the codebook
is designed. However, the users usually cannot easily deter-
mine the number of codewords at each VQ stage of MSVQ,
and then they doubt that an MSVQ model better than the M2.
In this paper, the GD algorithm maximizes that the value of
� = |�D/�R| when designing the codebook at kth VQ stage.
That is, the GD algorithm searches for a near-optimal codebook
by maximizing the value of �. The users need not determine
the rate (or the number of codewords) for each VQ stage before
the MSVQ(GD) is designed. Thus, the codebook for each VQ
stage can be optimized, making it better than the codebooks
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Fig. 3. The structure of the CSMSVQ.

designed in Refs. [21–23]. Additionally, the users can set the
value of the parameter w to control the structure of MSVQ(GD)
in the GD algorithm. If the value of parameter w is small, then
MSVQ(GD) generally consists of more codewords for each VQ
stage; otherwise, fewer codewords are produced in each VQ
stage. Experimental results indicate that MSVQ(GD) outper-
forms the other traditional MSVQs. The second contribution of
this paper is to develop the constrained-storage MSVQ, namely
CSMSVQ, using a sharing codebook. Fig. 3 illustrates the struc-
ture of CSMSVQ, in which all VQ stages share the codewords
contained in the sharing codebook. The genetic merge (GM)
algorithm is a genetic algorithm that automatically generates
the sharing codebook under the storage constraint, in which
case the users need not define the sharing codebook size in
CSMSVQ. That is, the GM algorithm can optimize the sharing
codebook.

The remainder of this paper is organized as follows. Section
2 presents the design of the MSVQ(GD). Section 3 then de-
scribes the design of the CSMSVQ using the GM algorithm.
Subsequently, experiments are given in Section 4. Conclusions
are finally made in Section 5.

2. Design of MSVQ based on the GD algorithm

Section 2.1 describes the GD algorithm, while Section 2.2
presents the design of the MSVQ(GD).

2.1. GD algorithm

In the proposed MSVQ(GD), the GD algorithm replaces the
traditional LBG algorithm to design the codebook for each VQ
stage. The GD algorithm can automatically search the proper
number of codewords as the codebook in each VQ stage accord-
ing to the rate–distortion performance of MSVQ(GD). Also,
the number of codewords in each VQ stage of MSVQ(GD) is
different, and the code of each VQ stage relies on the Huffman
coding [24].

Let L={x1, x2, . . . , xn} denote the set of training data objects
for designing the MSVQ(GD). Suppose that L is a large data
set. To perform GD for processing the large data set, the PNN
algorithm [25] is first applied to the set L. In PNN, the two
closed objects can be merged at a time to form a new cluster,
and this merge processing is continued until the desired number

of clusters is obtained. Let the set L′ = {B1, B2, . . . , Bm} with
m clusters, be obtained after the PNN is applied to L, and let
Vi indicate the center of cluster Bi , for 1� i�m. Each cluster
Bi is considered a component and is not divided during the
GD algorithm. That is, only m (m>n) components must be
further processed in GD. The PNN algorithm is used to reduce
the computation time in GD. Therefore, the GD algorithm can
efficiently process the large data set.

Before describing the design of the GD algorithm for the
p-stages MSVQ(GD), this study first defines the distortion of
k-stages MSVQ(GD), D(k-stages MSVQ(GD)), and the rate,
R(k-stages MSVQ(GD)), for 1�k�p as follows. Let B

(k−1)
i

denote the residual vector obtained after the component Bi is
quantized by k − 1 VQ stages in MSVQ(GD). B

(k−1)
i thus is

considered the input vector to the kth VQ stage in MSVQ(GD).
Moreover, let the codebook in the kth VQ stage contain zk code-
words, C(k)

1 , C
(k)
2 , . . . , C

(k)
zk

. Each codeword C
(k)
j is regarded as

the center of cluster Cj , for 1�j �zk . Then, B
(k−1)
i searches

the closest codeword, C
(k)
q , as the coding result in the kth VQ

stage, where q = arg min1� j �zk
‖B(k−1)

i − C
(k)
j ‖. Initially, we

set B
(0)
i = Vi , for 1� i�m. Then,

B
(k)
i = B

(k−1)
i − C(k)

q for 1�k�p and 1� i�m. (1)

The residual vector, B
(k)
i , serves as the input to the (k+1)th

VQ stage of MSVQ(GD). code(B(k−1)
i ) then is defined for

1�k�p, as follows:

code(B(k−1)
i ) = The code of C(k)

q in the codebook

of the kth VQ stage. (2)

Therefore, D(k-stages MSVQ(GD)) and R(k-stages MSVQ(GD))
are defined as follows:

D(k-stages MSVQ(GD)) =
zk∑

j=1

∑

Bi∈Cj

‖V −
i C

(k)
j ‖|Bi |, (3)

where |Bi | indicates the number of objects contained in the
component Bi .

R(k-stages MSVQ(GD)) =
m∑

i=1

|code(B(k−1)
i )||Bi |, (4)
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where |code(B(k−1)
i )| is denoted as the length of code(B(k−1)

i )

defined as Eq. (2). Under the conditions of quasi-convexity, the
slope of the rate–distortion function for rates between that of
(k − 1)-stages MSVQ(GD) and k-stages MSVQ(GD), �k , is

�k = �D

�R
= D((k-1)-stages MSVQ(GD)) − D(k-stages MSVQ(GD))

R(k-stages MSVQ(GD)) − R((k − 1)-stages MSVQ(GD))
for 1�k�p. (5)

This paper emphasizes that the kth VQ stage of MSVQ(GD)
is designed to maximize the value of the rate–distortion per-
formance, �k . Furthermore, users can control the size of the
codebook in the kth VQ stage of MSVQ(GD). If �R in Eq. (5)
is maximized, the training data set at any one time is classi-
fied into many codewords. That is, the MSVQ(GD) with fewer
stages can be designed at the certain bit rate. Also, if �R is
minimized, then the training data set is classified into few code-
words, and the GD algorithm tends to produce a MSVQ(GD)
with more stages at the same bit rate. Therefore, �k in Eq. (5)
can be rewritten as

�′
k = �D

(�R)w
= D((k − 1)-stages MSVQ(GD)) − D(k-stages MSVQ(GD))

[R(k-stages MSVQ(GD)) − R((k − 1)-stages MSVQ(GD))]w , (6)

where w denotes a weighting factor. Notably, w is positive in
Eq. (16). If w is larger than 1, then the codebook containing
few codewords can be obtained. Moreover, if w is within (0,
1), the codebook containing many codewords is produced.

Let MSVQ(GD) with (k − 1)-stages have been designed.
The following only describes how to design the kth stage of
MSVQ(GD) because the GD algorithm designs one VQ stage
at a time in MSVQ(GD). The main goal of the GD algorithm
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Fig. 4. The basic processing of the genetic algorithm.

is to search for the proper number of codewords as the code-
book, which enhances the value of �′

k when the kth VQ
stage of MSVQ(GD) is designed by the GD algorithm. The

GD algorithm is designed using the genetic approach, which
consists of an initialization step and iterations with three phases
in each generation. Fig. 4 shows the basic structure of the ge-
netic approach. The basic structure is described in the follow-
ing.

2.1.1. Initialization step
A population of N strings is randomly generated in the ini-

tialization step of GD. The length of each string is m, which

is the number of components obtained in the PNN algorithm.
Moreover, N strings are generated such that the 1s in the strings
are uniformly distributed within [m, 1]. Each string represents
a subset of {B1, B2, . . . , Bm}. If this subset contains Bi , then
the ith position of the string will be 1; otherwise, it will be 0.
Each Bi in the subset is a seed for generating a cluster.

The method for generating a clustering from the seeds
is described before elucidating the three phrases. Let
R = (b1, b2, . . . , bm) be a bit string in the population. Each
bit bi indicates the corresponding component Bi . The string R
then includes two sets of components, L1 and L2, which are
defined as

L1 = {Bi |bi = 1, 1� i�n1}, (7)

L2 = {B ′
j |bj = 0, 1�j �n2}, (8)

where n1 + n2 = m and L′ = L1 ∪ L2. In L1, n1 components,
Bi for 1� i�n1, serve as the seeds to generate n1 clusters.
Initially, each cluster Ci contains just one component, Bi , and
then the center Si of cluster Ci is set to Vi . The components
in L2 subsequently are considered individually and the Eu-
clidean distances between each component and the centers Si ,
for 1� i�n1, are calculated. Then,

B ′
j ⊂ Ci if ‖V ′

j − Si‖�‖V ′
j − Sl‖ for 1� l�n1. (9)

If B ′
j is classified into the cluster Ci to form the new cluster Ĉi ,

then the new center Ŝi and the size of cluster Ĉi are updated as

Ŝi = Si |Ci | + V ′
j |B ′

j |
|Ci | + |B ′

j |
, |Ĉi | = |Ci | + |B ′

j |, (10)

where |Ci | and |B ′
j | indicate the number of objects contained

in the cluster Ci and the component B ′
j , respectively. After
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considering all of the components in L2, n1 clusters, Ci for
1� i�n1, are obtained from the string R.

2.1.2. Reproduction phase
The main issue of the reproduction phase is to design the

fitness function of the string R. Let the string R generate n1
clusters, Ci for 1� i�n1. The center Si of each cluster Ci is
considered the codeword in the codebook. That is, n1 code-
words are generated to produce the codebook in the kth VQ
stage of MSVQ(GD). Thus, C

(k)
i = Si is set for 1� i�zk ,

where zk = n1. These zk codewords are coded by the Huff-
man codes based on the number of objects contained in each
cluster Ci . �′

k is calculated when the codebook in the kth VQ
stage is generated by the string R. If �′

k is large, then the fit-
ness of string R also tends to be large; otherwise, the fitness
of string R is small. Thus, the fitness function of string R is
defined as

Fitness(R) = �′
k . (11)

After calculating the fitness of each string in the population, the
reproduction operator is implemented using a roulette wheel
with slots sized according to fitness.

2.1.3. Crossover phase
If the crossover operator is applied to a selected pair of

strings R and Q, then two random numbers e and f in [1, m]
are generated to determine which pieces of the strings are to
be interchanged. After the crossover phase, two new strings,
R′ and Q′, replace the strings, R and Q, in the population.
The significance of the crossover phase is that it exchanges
seeds between the different strings, to yield the various
clusterings.

2.1.4. Mutation phase
During the mutation phase, the bits of the strings in the

population are chosen from [1, m] with probability Pm. Each
chosen bit is then changed from 0 to 1 or from 1 to 0. That
is, if one bit is chosen, then a selected cluster is discarded or
produced in a string. After the mutation phase, the new string
R′ can be obtained and the original string R can be replaced.

The user may specify the number of generations over which
they want the GD algorithm to run. The GD algorithm runs for
this number of generations and retains the best fitting string.

The following analyzes the time complexity of GD when
the kth VQ stage of MSVQ(GD) is designed. The GD algo-
rithm consists of an initialization step and iterations with three
phases in each generation. The number of training compo-
nents is set to m, and N denotes the population size. More-
over, z denotes the average codebook size of these (k − 1)

VQ stages in MSVQ(GD). The time complexity of the GD
algorithm is dominated by the calculation of the fitness func-
tion. N strings take O(N(m2 + mkz)) time to design the
kth VQ stage of MSVQ(GD). Suppose the GD algorithm is
asked to run G generations, the time complexity of GD is
O(GN(m2 + mkz))�O(GNm2).

2.2. Design of the proposed MSVQ(GD)

The following describes the design algorithm for MSVQ(GD),
as follows.

Algorithm: Design_MSVQ(GD)

Input: The distortion threshold d and the set of training
objects, L = {x1, x2, . . . , xn}.

Output: MSVQ(GD) under the distortion constraint.
Step 1. The PNN algorithm is applied to the set L, and then

the set L′ with m components, {B,
1B

,
2 . . . , B

}
m, is ob-

tained. Let B
(k−1)
i represent the residual vector for the

input to the kth VQ stage. Moreover, set B
(0)
i = Vi ,

for 1� i�m, where Vi is the center of Bi . Set k = 1.
Step2. While L′ is not an empty set.

Step 2.1. The GD algorithm is applied to the set L′,
and then zk clusters, C1, C2, . . . , Czk

, are
obtained. Let Sj be the center of cluster

Cj , and let C
(k)
j denote the codeword in the

codebook of the kth VQ stage. Then, set
C

(k)
j = Sj , for 1�j �zk .

Step 2.2. Let H represent the collection of the code-
words, in which the distortion of each code-
word exceeds d. Set H={C(k)

j |∑m
i=1

Bi∈Cj

‖Vi−
Sj‖|Bi |/|Cj | > d, 1�j �zk}. Set L′′ = �.

Step 2.3 For each vector, B
(k−1)
i , 1� i�m, do the

following.
If C

(k)
q ∈H , where

q = arg min1� j �zk
‖B(k−1)

i − C
(k)
j ‖, then

calculate B
(k)
i =B

(k−1)
i −C

(k)
q and set L′′ =

L′′ ∪ {B(k)
i }.

Step 2.4 Set L′ = L′′ and k = k + 1.
Step 3. Output the k-stages MSVQ(GD). Stop.

Two advantages of the proposed MSVQ(GD) compared to
the traditional MSVQs are as follows. First, the GD algorithm
can automatically search for the proper number of codewords
which are regarded as the codebook in each VQ stage according
to the rate–distortion performance of MSVQ(GD). Users need
not artificially determine the codebook size in each VQ stage
when the MSVQ(GD) is designed. Second, the weight, w, in the
GD algorithm is given to the users to design the MSVQ(GD).
If w is larger than 1, then the codebook containing a small
number of codewords can be obtained in the VQ stage. Restated,
the MSVQ(GD) with many VQ stages is produced. If w is
within (0, 1), the codebook containing numerous codewords
can be produced in the VQ stage. That is, the MSVQ(GD)
with few VQ stages is produced. The experiments in Section 4
have shown that the MSVQ(GD) outperforms other traditional
MSVQs based on the LBG algorithm given the same bit rate.

3. Design of CSMSVQ using a sharing codebook

This section proposes CSMSVQ using a sharing codebook
to reduce the storage size. The codewords in the sharing



694 S.-B. Yang / Pattern Recognition 41 (2008) 689–700

Fig. 5. The sharing codebook and the kth VQ stage in CSMSVQ.

codebook are obtained by merging similar codewords in the
VQ stages. All VQ stages then can share the codewords in the
sharing codebook. The structure of CSMSVQ is described in
Section 3.1. Section 3.2 then indicates the design of the shar-
ing codebook by the GM algorithm, and Section 3.3 presents
the design of the CSMSVQ.

3.1. Structure of CSMSVQ

Fig. 5 details the p-stages CSMSVQ, which is described
as follows. Let the codebook in the kth VQ stage of
CSMSVQ contain zk codewords, C

(k)
1 , C

(k)
2 , . . . , C

(k)
zk

, for
1�k�p, and let the sharing codebook contain zs codewords,
C

(s)
1 , C

(s)
2 , . . . , C

(s)
zs

. The codebook of each VQ stage contains
a pointer indicating the sharing codebook. In the sharing code-
book, the selector function, uk , specifies a specific subset of
sharing codewords for the kth VQ stage. If the sharing code-
word C

(s)
j is contained in the subset for the kth VQ stage,

uk(j) is set to 1; otherwise uk(j) is set to 0. That is, when
aninput vector is quantized by the kth VQ stage of CSMSVQ,
the input vector compares with the codewords in the set,
S(k) = {C(k)

i |1� i�zk} ∪ {C(s)
j |uk(j) = 1, 1�j �zs}.

The following describes how to define the code of each code-
word in CSMSVQ. Let N(C

(k)
i ) indicate the number of train-

ing vectors, which are the closest to the codeword, C
(k)
i , for

1� i�zk . Let N(C
(s)
j ) indicate the number of training vec-

tors, which are the closest to the sharing codeword, C
(s)
j , for

1�j � zs . Thus, N(C
(s)
j )=∑p

k=1
uk(j)=1

Nk(C
(s)
j ), where Nk(C

(s)
j )

indicate the number of training vectors, which are the closest to
the sharing codeword, C(s)

j , when the training vectors are quan-

tized by the kth VQ stage. Then, these codewords in S(k)are
coded by the Huffman codes for the kth VQ stage based on these
numbers, N(C

(k)
i ) for 1� i�zk and Nk(C

(s)
j ) for 1�j �zs .

3.2. GM algorithm

MSVQ(GD) described in Section 2 can be produced before
designing the CSMSVQ. The GM algorithm then searches the
similar codewords contained in these VQ stages of MSVQ(GD)
that need to be merged into the codewords in the sharing code-
book. That is, these similar codewords in the VQ stages can
then be discarded after being merged into a new codeword in
the sharing codebook. The merging process is continued until
the desired storage of CSMSVQ is reached. Although merging
many codewords into one reduces the storage size, it also in-
creases the distortion of CSMSVQ. The main design issue of
the GM algorithm is to automatically determine the VQ stages
where the codewords can be merged into a codeword in the
sharing codebook, thus maximizing the storage–distortion per-
formance of CSMSVQ. Before describing the design of the GM
algorithm, the storage of p-stages CSMSVQ with the sharing
codebook size zs , S(p-stages CSMSVQ with the sharing code-
book size zs), and the distortion, D(p-stages CSMSVQ with the
sharing codebook size zs), are defined as follows. Let B

(k−1)
i

denote the residual vector to the kth VQ stage of CSMSVQ.
Then, B

(k−1)
i searches the closest codeword Ĉ in S(k). We cal-

culate

B
(k)
i = B

(k−1)
i − Ĉ for 1� i�m and 1�k�p. (12)

Therefore, D(p-stages CSMSVQ with the sharing codebook
size zs) and S(p-stages CSMSVQ with the sharing codebook
size zs) are defined as follows:

D(p-stages CSMSVQ with the sharing codebook size zs)

=
p∑

k=1

zk∑

j=1

∑

Bi∈Cj

‖V −
i C

(k)
j ‖|Bi |

+
zs∑

j=1

∑

Bi∈C′
j

‖V −
i C

(s)
j ‖|Bi |, (13)

where C
(k)
j and C

(s)
j are denoted as the center of clusters Cj

and C′
j , respectively.

S(p-stages CSMSVQ with the sharing codebook size zs)

= zs +
p∑

i=1

zi . (14)

Let MSVQ(GD) consist of p VQ stages, and let the code-
book in the kth VQ stage of MSVQ(GD) contain zk codewords,
C

(k)
1 , C

(k)
2 , . . . , C

(k)
zk

, for 1�k�p. The GM algorithm using the
genetic approach to design the sharing codebook of CSMSVQ
is described as follows.
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3.2.1. Initialization step
A population of N strings is randomly generated during the

initialization step of GM. The length of each string is set
to e = ∑p

i=1zk , where e denotes the total number of code-
words contained in all VQ stages of MSVQ(GD). N strings
are generated such that the 1s in the strings are uniformly
distributed within [1, e]. Each string represents a subset of
H = {C(1)

1 , C
(1)
2 , . . . , C

(1)
zk

, . . . , C
(p)
1 , C

(p)
2 , . . . , C

(p)
zk

}. If Ck
i is

in this subset, then the corresponding position of the string
will be 1; otherwise, it will be 0. All Ck

i in the subset can be
merged into a codeword in the sharing codebook. For example,
the string R= (1, 0, 1, 0, . . . , 0) indicates that both codewords,
C

(1)
1 and C

(1)
3 , can be merged into a codeword in the sharing

codebook.

3.2.2. Reproduction phase
The following describes how to define the fitness function

of the string R. Let T ={C(k)
j |the corresponding bit in R is 1,

1�j �zk, 1�k�p} be the collection of codewords whose
corresponding bits equal 1 in R. These codewords in T then
are merged into a new codeword, C(s), for the string R.
Then,

C(s) =
∑

C
(k)
j ∈T

C
(k)
j N(C

(k)
j )

∑
C

(k)
j ∈T

N(C
(k)
j )

. (15)

That is, the string R produces a codeword in the sharing code-
book, and then CSMSVQ with the sharing codebook size
1 is obtained. Thus, the fitness function for the string R is
defined as

Fitness(R) = �S

�D

= S(p-stages MSVQ(GD)) − S(p-stages CSMSVQ with the sharing codebook size 1)

D(p-stages CSMSVQ with sharing codebook size 1) − D(p-stages MSVQ(GD))
, (16)

where D(p-stages MSVQ(GD)) and S(p-stages MSVQ(GD))
indicate the distortion and storage of MSVQ(GD), respectively.
According to the storage–distortion performance, the fitness of
the string is maximized in the GM algorithm. This phenomenon
occurs because the string with high fitness indicates that the
codewords represented by the string are appropriate for merging
into a codeword in the sharing codebook.

3.2.3. Crossover and mutation phases
The crossover and mutation phases in GM are similar to that

in GD. If a pair of strings R and Q is chosen for applying the
crossover operator, two random numbers in [1, e] are generated
to determine which pieces of the strings are to be interchanged.
Also, the crossover operator is done with probability Pc. Fur-
thermore, in the mutation phase, the bits of each string R in the
population are chosen from [1, e] with probability Pm. Each
chosen bit is then changed from 0 to 1 or from 1 to 0. Follow-
ing the mutation phase, the new string R′ can be obtained and
the original string R can be replaced.

The objective of the GM algorithm is not to find the
string with the best fitness, but rather a set of strings with

good fitness. Each string represents that some of C
(k)
j , for

1�j �zk, 1�k�p, can be merged into a sharing codeword.
Thus, the set of strings with good fitness produces a good
sharing codebook. The next section describes how to design
the codewords in the sharing codebook under the storage
constraint given by the users after the completion of the
GM algorithm.

The following analyzes the time complexity of the GM al-
gorithm when the sharing codebook is designed in the p-stages
CSMSVQ. The number of training components is m, and N
denotes the population size. Moreover, z denotes the average
codebook size of these p VQ stages of CSMSVQ. The time
complexity of the GM algorithm then is dominated by the cal-
culation of the fitness function. Each string takes O(mpz) to
calculate the fitness function in the reproduction phase. If the
GM algorithm is asked to run G generations, then the time
complexity of GM is O(GNmpz).

3.3. Design of the CSMSVQ

Completing the GM algorithm obtains the N bit strings with
fitness. Each bit string represents a subset of H. That is, the
codewords represented by a bit string can be merged into a new
codeword in the sharing codebook. The problem is how to find
the subset of N bit strings to generate the sharing codebook of
CSMSVQ under the storage constraint. The Design_SMSVQ
algorithm is described as follows.

Algorithm: Design_CSMSVQ

Input: p-stages MSVQ(GD) and the storage threshold M.
Output: p-stages CSMSVQ with the sharing codebook size zs .

Step 1. Let the codebook in the kth VQ stage of MSVQ(GD)
contain zk codewords for 1�k�p. Set the structure
of CSMSVQ to be the same as that of MSVQ, and
set zs = 0.

Step 2. The GM algorithm is applied to all codewords con-
tained in these p VQ stages of MSVQ(GD). Then,
N bit strings with the fitness can be obtained.
Sort the fitness of the strings in non-increasing or-
der. For brevity, assume Fitness(R1)�Fitness(R2)�
· · · �Fitness(RN). Let Ti = {C(k)

j |the corresponding
bit in Ri is 1, 1�j �zk, 1�k�p} be the collection
of codewords, the corresponding bits of which equal
1 in Ri . Let the set U contain the codewords in the
sharing codebook. Set i = 1, U = � and T ′ = �.

Step 3. While (The storage size of CSMSVQ with the shar-
ing codebook size zs .) > M

Step 3.1. Choose Ri . The codewords in Ti then are
merged into a new codeword C(s), as shown
in Eq. (15).

Step 3.2. Set U=U∪C(s), T ′=T ′∪Ti and zs =zs +1.
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Fig. 6. The relation between the values of w and the average number of codewords for each VQ stage in MSVQ(GD). (a) Image data. (b) Speech data.

Step 3.3. For each codeword C
(k)
j in Ti do the follow-

ing:
Discard the codeword C

(k)
j in the kth VQ

stage of CSMSVQ. Set zk = zk − 1.
Step 3.4. Choose the smallest b > i such that Tb∩T ′=

�. Then, set i = b.
Step 4. Output the p-stages CSMSVQ with the shar-

ing codebook size zs . End.

An example to illustrate the Design_CSMSVQ algorithm
is given as follows. Suppose Fitness(R1)Fitness(R2)� · · · �
Fitness(RN), where R1 represents subset {C1, C2, C3}, R2 rep-
resents subset {C3, C4, C6}, R3 represents subset {C4, C5}, and
each of R4 to RN represents a subset containing at least one of
C1, C2, C3, C4 and C5. In this algorithm, by first choosingR1,
codewords C1, C2, C3, are merged into the first codeword of
the sharing codebook. Since the subset represented by R2 con-
tains C3 that is already in the subset represented by R1, R2 is

discarded. After that R3 is considered, the codewords, C4 and
C5, in this subset are merged, and then the second codeword
is obtained in the sharing codebook. In Design_CSMSVQ, the
merging processing is continued until the desired storage of
CSMSVQ is achieved.

The Design_CSMSVQ algorithm employs the greedy strat-
egy to search the set of bit strings to design the sharing code-
book. That is, the strings are selected based on order of fitness
values. However, the dynamic programming strategy can also
be applied to these N bit strings to identify the set of bit
strings under the storage constraint. Although the sharing code-
book produced by the dynamic programming strategy is better
than that produced by the greedy strategy, the time complexity
of the dynamic programming strategy is high. In the present
experiments, the coding quality obtained using the dynamic
programming strategy compared to the greedy strategy is well
below 0.005 dB in PSNR. Thus, the greedy strategy is sufficient
in the Design_CSMSVQ algorithm.
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Fig. 7. The relation between the values of w and the performance of MSVQ(GD). (a) The coding quality for image data set. (b) The coding quality for speech
data set. (c) Average encoding time for image data set. (d) Average encoding time for speech data set.

4. Experiments

This section compares the performance of MSVQ(GD) with
that of the other MSVQs. Furthermore, the proposed CSMSVQ
and CSVQ are compared below. Section 4.1 describes the data
sets used in the experiments. Moreover, Sections 4.2 and 4.3
show the performance of MSVQ(GD) and CSMSVQ, respec-
tively.

4.1. Data sets

The experiments use two data sets, namely speech and image
data sets, to test the performance of MSVQ(GD) and CSMSVQ,
respectively. In the image data set, five 512 × 512 (pixels)
images with 256 gray levels were employed as the training
images, and were divided into 4 × 4 blocks to design the
MSVQ(GD) and the other MSVQs. The “Lena”, “Boat” and
“F-16” images were not used in training to test the perfor-
mance of these methods. In the speech data set, a total of
100 000 spectral feature vectors of speech taken from the TIMIT
[26] database were used as training objects for designing the
MSVQ(GD) and the other methods. These spectral feature vec-
tors were taken from 1000 continuous speeches, given by five
males and five females. Each spectral feature vector contained

64 sample points. Furthermore, 50 000 spectral feature vec-
tors were extracted as testing objects that were not used in
training.

4.2. Performance of MSVQ(GD)

The parameters used in GD were population size 300,
crossover rate 80% and mutation rate 5%. Five hundred gen-
erations were run, and the best solution was retained in each
generation. Before GD was applied to the training data set, the
PNN algorithm was applied to all training objects to obtain a
small set of components. In the experiments, the size of the
component set was set to a fifth of the total number of training
objects. In GD, the weight, w, is used to control the number
of codewords for each codebook in MSVQ(GD). Fig. 6 shows
the average number of codewords in the codebook of each VQ
stage in MSVQ(GD) under the distortion threshold (d = 40
for image data, d = 60 for speech data) when various values
of w are used in Eq. (6). In Fig. 6, the value contained in the
bracket indicates the number of VQ stages in MSVQ(GD). If
w is large, then the MSVQ(GD) with many stages is obtained;
otherwise, the MSVQ(GD) with few stages is obtained. A sim-
ple heuristic method is given below for users to determine the
number of stages of MSVQ(GD). In Fig. 6(a), MSVQ(GD)
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Fig. 8. Comparison of the performance of MSVQ(GD), MSVQ(LBG), EC-RVQ and PCA + GA. (a) “Lena” image. (b) “Boat” image. (c) “F-16” image. (d)
Speech data.

with four stages is better than the other MSVQ(GD)s with
different number of stages, because the MSVQ(GD) with four
stages is more stable when w is within a range, [1.25, 1.75],
that is larger than the other ranges, [0.25, 0.5], [0.75, 1] and
[2, 2.25]. Furthermore, MSVQ(GD) with five stages is chosen
by the heuristic method in Fig. 6(b). Figs. 7(a)and (b) show that
increasing w improves the coding quality. This occurs because
the GD algorithm tends to grow into an MSVQ(GD) containing
numerous VQ stages with increasing w, and because the num-
ber of vectors represented by the codewords in the MSVQ(GD)
with numerous VQ stages is larger than that represented by the
codewords in the MSVQ(GD) with few VQ stages. Figs. 7(c)
and (d) also show that the encoding time of MSVQ(GD) in-
creases with increasing numbers of stages. However, increasing
the number of VQ stages also enhances the coding quality of
MSVQ(GD).

In the present experiments, the values of w in the GD al-
gorithm were set to 0.5, 1.5 and 2.5 to test the performance
of MSVQ(GD), respectively. Fig. 8 compares MSVQ(GD)

based on the GD algorithm, MSVQ(LBG) based on the LBG
algorithm, EC-RVQ [10] and Sun’s method [23]. In Fig. 8,
“PCA + GA” denotes Sun’s method [23]. The GD algorithm
was first used to design the MSVQ(GD), and MSVQ(LBG),
EC-RVQ and PCA + GA were then applied to obtain equal-
sized codebooks for each VQ stage. That is, MSVQ(GD),
MSVQ(LBG), EC-RVQ and PCA + GA have the same num-
ber of VQ stages and the same number of codewords in
each VQ stage. Fig. 8 demonstrates MSVQ(GD) outperforms
MSVQ(LBG), EC-RVQ and PCA + GA. Additionally, Fig. 8
reveals two phenomena. First, the GD algorithm designs the
codewords in each codebook of the VQ stage according to
the rate–distortion performance of MSVQ(GD), while the
PCA + GA does not. Thus, the MSVQ designed by the GD
algorithm has a better rate–distortion performance than that de-
signed by PCA+GA. Additionally, the GD algorithm can auto-
matically search the proper number of codewords for each VQ
stage in MSVQ(GD). Thus, the coding quality of MSVQ(GD)
tends to achieve the near-optimal coding. Furthermore,
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Fig. 9. Comparison of the performance of CSMSVQ and CSVQ. (a) “Lena” image. (b) “Boat” image. (c) “F-16” image. (d) Speech data.

the GD algorithm based on the genetic approach finds the
near-optimal solution, while the LBG and the EC-RVQ design
algorithms usually only finds a locally optimal solution.

4.3. Performance of CSMSVQ

The MSVQ(GD) can be produced before designing the
CSMSVQ. The GM algorithm searches the similar codewords
in the codebooks of MSVQ(GD) to design a sharing code-
book, and then the Design_CSMSVQ algorithm produces
the CSMSVQ under the storage constraint. Fig. 9 compares
CSMSVQ and CSVQ proposed in Ref. [13]. To fairly compare
CSMSVQ and CSVQ, p codebooks in MSVQ(GD) are used
as p sources to design the universal codebook for CSVQ . That
is, the GM algorithm first was used to design the CSMSVQ,
and then the CSVQ was applied to obtain the universal code-
book with equal rate of each VQ stage. In Fig. 9, the storage
reduction ratio (SRR) is defined as

SRR=Memory required by the constrained-storage approach

Memory required by MSVQ(GD)

= M
∑p

i=1zi

. (17)

The solid and dotted lines indicate the loss of coding qual-
ity when CSMSVQ and CSVQ are used to encode the im-
age, respectively. From Fig. 9, the loss of coding quality by
using CSMSVQ is less than that by using CSVQ. This phe-
nomenon occurs for a reason. The GM algorithm outperforms
the LBG algorithm when the sharing codebook is designed. The
GM algorithm designs the sharing codebook according to the
storage–distortion performance of CSMSVQ. The users need
not to determine the sharing codebook size before the CSMSVQ
is designed. The Design-CSMSVQ algorithm can automatically
generate the sharing codebook in CSMSVQ based on the stor-
age constraint. In the experiments conducted here, the LBG al-
gorithm often searches for the local optimal solution when the
universal codebook of CSVQ is designed.

5. Conclusions

MSVQ(GD) designed by the GD algorithm has the advan-
tage of better coding performance than the traditional MSVQ
designed by the LBG algorithm. It seems sometimes inappro-
priate for the users to determine the codebook size for each
VQ stage. Specifically, the inappropriate division generally in-
creases either the bit rate or the average distortion, or both.
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This paper thus proposed MSVQ(GD). The GD algorithm is
proposed to automatically search for the appropriate number of
codewords in each VQ stage to maximize the rate–distortion
function. Moreover, the threshold w is provided to control the
structure of MSVQ(GD). MSVQ(GD) outperforms the tradi-
tional MSVQ, as shown in the present experiments. Further-
more, this paper also proposes the GM algorithm to search
for the similar codewords in the codebooks of MSVQ(GD),
and then the MSVQ(GD) using the sharing codebook, namely
CSMSVQ, can be produced by the Design_CSMSVQ algo-
rithm. In the experiments conducted here, although the coding
quality obtained by CSMSVQ is smaller than that obtained us-
ing MSVQ(GD), the storage required by CSMSVQ decreases
more than that required by MSVQ(GD).
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