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bstract. The C-fuzzy decision tree (CFDT)–based on the fuzzy
-means (FCM) algorithm has been proposed recently. In many ex-
eriments, the CFDT performs better than the “standard” decision
ree, namely, the C4.5. A new C-fuzzy decision tree (NCFDT) is
roposed, and it outperforms the CFDT. Two design issues for
CFDT are as follows. First, the growing method of NCFDT is
ased on both classification error rate and the average number of
omparisons for the decision tree, whereas that of CFDT only ad-
resses classification error rate. Thus, the proposed NCFDT per-
orms better than the CFDT. Next, the classified point replaces the
luster center to classify the input vector in the NCFDT. The
lassified-points searching algorithm is proposed to search for one
lassified point in each cluster. The classification error rate of the
CFDT with classified points is smaller than that of CFDT with clus-

er centers. Furthermore, these classified points can be applied to
he CFDT to reduce classification error rate. The performance of
CFDT is compared to CFDT and other methods in experiments.
2008 SPIE and IS&T. �DOI: 10.1117/1.2976421�

Introduction
ecision trees1–10 are common approaches for machine

earning, recognition, and classification systems. In the ba-
ic design procedure, one variable �attribute� of the input
ector is chosen at a time to be compared to the nodes in
he decision tree. The users select the most discriminative
ariable as the new node for growing the decision tree.
ognitive uncertainties, such as fuzziness and ambiguity,
ave recently been incorporated into the knowledge induc-
ion process by using fuzzy decision trees.11 The Fuzzy ID3
lgorithm12 and its variants13–15 are popular and efficient
ethods to design the fuzzy decision trees. Those decision

rees can be regarded as single-variable decision trees, in
hich one variable is considered at a time. This growth
ethod is a drawback when classifying input vectors with
ultivariable entities characterized by high homogeneity

low variability�. In Ref. 16, the data can be perceived as a
ollection of information granules. Additionally, the infor-
ation granules and information granulation are almost

ynonymous with clusters.17,18 The fuzzy clusters are the
entral concept behind the generalized tree and are called
luster-oriented decision trees.19 The C-fuzzy decision
ree19 �CFDT� is derived from the well-known fuzzy
-means algorithm �FCM� clustering methods.17 The
FDT often outperforms the C4.5.19 The CFDT is also
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based on multivariable decision trees. The multivariable de-
cision trees most effectively classify the vectors with mul-
tivariable entities characterized by high homogeneity. In
contrast to single-variable decision trees, which consider
one variable at a time, a multivariable decision tree in-
volves all variables that are considered at each node.

However, the CFDT19 has two drawbacks. First, the
growing method selects the leaf node with the highest clas-
sification error rate to be split in the CFDT one at a time.
Although the classification error rate can be reduced by
splitting a node to grow the decision tree, the number of
comparisons is increased when an input vector is classified
in the CFDT. However, the average number of comparisons
for the input vector classified in the decision tree is not
considered during the design of CFDT. The second draw-
back of CFDT is illustrated in Fig. 1. In Fig. 1�a�, the data
set consists of three classes, A, B, and C. The data set is
divided into two clusters, C1 and C2. Cluster C1 is then
further divided into two clusters, C3 and C4. Figure 1�b�
shows the corresponding CFDT. If input x is classified in
the CFDT, input x is then first compared to clusters C1 and
C2. Input x is classified into cluster C2 because x is closer
to the center of cluster C2 than the center of cluster C1. A
classification error occurs when class B is the class of input
x. This error occurs when a large cluster represents a node.
A single center cannot represent all vectors in a large clus-
ter. That is, the center of cluster C1 is hard to represent all
vectors contained in C1 because C1 is a large cluster that
contains vectors belonging to two classes, A and B. This
classification error usually occurs when an input vector is
located in a region between the two clusters. Thus, cluster
centers are not appropriate for classifying the input vector
in the CFDT.

In this paper, a new C-fuzzy decision tree �NCFDT� is
proposed that improves these two drawbacks of the CFDT.
First, the growing method selects a leaf node to split in the
NCFDT, according to classification error rate and the aver-
age number of comparisons. Thus, the performance of the
NCFDT is better than that of CFDT. The NCFDT then
achieves a near-optimal decision tree. Next, the classified
points are proposed to replace cluster centers to classify the
input vector in the NCFDT. The classified-points searching
�CPS� algorithm in the NCFDT is proposed to search for
one classified point in each cluster. To reduce the classifi-
cation error rate in the NCFDT, the classified point in each
cluster is closed to the region between clusters. For ex-
ample, in Fig. 1�c�, let P and P be classified points closed
1 2
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o the region between C1 and C2. Input vector x is closer to
P1 in C1 than to P2 in C2, and, thus, x is correctly classified
o cluster C1.

The remainder of this paper is organized as follows.
ection 2 presents the design of the proposed NCFDT. Sec-

ion 3 then describes the design of the NCFDT with the
lassified points. Experiments are given in Section 4, and
ection 5 presents conclusions.

(a)

(b)

(c)

ig. 1 Example illustrating the classification error between two clus-
ers: �a� the clustering results, �b� the decision tree, and �c� the input
ector x is classified to C1 because x is closer to P1 than P2.
ournal of Electronic Imaging 033017-
2 Design of the NCFDT

The growing method in the CFDT only considered classi-
fication error rate of the decision tree when the CFDT was
designed. However, classification error rate and the average
number of comparisons are both considered when design-
ing the NCFDT. The main goal of NCFDT is to reduce the
classification error rate and the average number of compari-
sons. Figure 2 shows an example to illustrate the growing
method. In Fig. 2, T1 denotes the decision tree after the leaf
node t1 is split in the decision tree T, and T2 denotes the
decision tree after the leaf node t2 is split in decision tree T.
The growing method selects one node at a time to split in T.
From Fig. 2, T2 is better than T1 because the classification
error rate of T2 is smaller than that of T1 when the average
number of comparisons is the same. In the NCFDT, the
growing method selects one node with maximal value of
�= ��R /�V� to split in T, while the node with maximal
value of �R is only considered in the growing method of
CFDT. Thus, the performance of the NCFDT is better than
that of CFDT.

Before the growing method of NCFDT is described, the
average number of comparisons and classification error rate
of the NCFDT are defined. First, let T denote the decision
tree, NCFDT, and let H denote the set of all leaf nodes in T,
including node ti. Let P�tl� represent the probability of
training vectors in node ti, which is defined as

P�ti� =
the number of training samples contained in the node ti

all the training samples
.

�1�

Let L�ti� be the average number of comparisons required
when input x travels from the root node to the leaf node ti
in the NCFDT. Then, the average number of comparisons
of T, V�T�, is defined as

V�T� = �
ti�H

P�ti�L�ti� �2�

The classification error rate of the NCFDT is then de-
fined as follows. Let X�k��Rn be the training vector, and
let Y�k��R be the corresponding class of X�k�. Let cluster
C be the set of training vectors contained in node t . Then,

Fig. 2 Example illustrating that T2 is better than T1.
i i
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i = �X�k��ui�X�k�� � uj�X�k��, for all j � i� , �3�

here ui�X�k�� denotes the degree of membership that X�k�
as in cluster Ci. Let there be z leaf nodes, including node

i that have the same parent node. Then,

i�X�k�� =
1

� j=1
z �	X�k� − Si	/	X�k� − Sj	�2 , �4�

here 	 	 indicates the measure of Euclidean distance and Si
s the center of Ci. Notably, ui�X�k�� satisfies the constraints
hat 0�ui�X�k���1 and �i=1

z ui�X�k��=1. Furthermore, af-
er training vectors are classified to clusters, the new center

i� of cluster Ci is updated as

i� =
�X�k��Ci

ui�X�k��2X�k�

�X�k��Ci
ui�X�k��2 . �5�

et the set Oi collect outputs of training vectors that have
een assigned to Ci as

i = �Y�k��X�k� � Ci� . �6�

he definition of the representative of ti, positioned in the
utput space, is given as

Mi =
��X�k�,Y�k���Ci�Oi

ui�X�k��Y�k�

��X�k�,Y�k���Ci�Oi
ui�X�k��

. �7�

hen, the classification error rate of node ti, R�ti�, is then
efined as

�ti� = �
�X�k�,Y�k���Ci�Oi

ui�X�k���Y�k� − Mi�2. �8�

hen R�ti�=0, the node ti can be assigned to a pure class,
nd then node ti will not be further divided while growing
he decision tree. Furthermore, when R�ti��0, training vec-
ors contained in the data set of node ti still belong to many
lasses, and node ti is hard to be positioned in the output
pace. In this case, node ti can be further split to grow the
ecision tree. Finally, the classification error rate of T,
�T�, is defined as

�T� = �
i�H

P�t�R�t� . �9�

Let tree T� indicate that tree T after node ti is split into z
hild nodes, ti,1 , ti,2 , . . . , ti,z, by the FCM. Then,

�T� = �
j�H

j�ti

P�j�Y�j� + P�ti�V�ti� , �10�

�T� = �
j�H

j�ti

P�j�R�j� + P�ti�R�ti� , �11�
ournal of Electronic Imaging 033017-
V�T�� = �
j�H

j�ti

P�j�V�j� + �
k=1

z

P�ti,k�V�ti,k� �12�

R�T�� = �
j�H

j�ti

P�j�R�j� + �
k=1

z

P�ti,k�R�ti,k� . �13�

Under the conditions of quasi-convexity, the slope of the
classification error rate and the average number of compari-
sons between that of T and T� is

� =
�R

�V
=

R�T� − R�T��
V�T�� − V�T�

=
P�ti�R�ti� − �k=1

z P�ti,k�R�ti,k�
��k=1

z P�ti,k�V�ti,k�� − P�ti�V�ti�
.

�14�

Thus, the aim is to maximize � when splitting a node in the
decision tree to reduce classification error rate and the av-
erage number of comparisons. The growing method selects
the node with the largest � to be split at a time in the
NCFDT.

In the paper, the design issue of the proposed NCFDT
focuses on the storage constraint condition. Before design-
ing the NCFDT with the storage constraint, the user must
give a threshold, �, as the storage constraint. The NCFDT
with this storage constraint is grown until the storage of
NCFDT reaches the threshold, �. The algorithm for design-
ing the NCFDT with storage constraint is described as fol-
lows.

Algorithm: Design�NCFDT�Storage�Constraint
Input: Storage threshold � and the training data set.

Output: The NCFDT with the storage constraint.

Step 1. Let the root node of tree T contain all training vectors in
the training data set. Set STORAGE=0.

Step 2. While STORAGE��

Step 2.1. For each leaf node t and T, such that
R�t��0, perform the following.

Step
2.1.1.

Apply the FCM to all training vectors
in node t to generate z child nodes
of t.

Step
2.1.2.

Calculate the value of � while node t
is split in T.

Step 2.2. Let t� be the leaf node with the largest �, and
let t� be divided into z child nodes by the
FCM. Split node t� in T to generate the new
decision tree T�.

Step 2.3. STORAGE=STORAGE+z and set T=T�.

Step 3. Output the NCFDT with storage constraint, T.

3 Design of the NCFDT with Classified Points
Section 3.1 analyzes the classified points. Section 3.2 de-
scribes the method for designing classified points in a clus-
ter using the CPS algorithm. Section 3.3 describes the clas-
sification method for the NCFDT with classified points.
Jul–Sep 2008/Vol. 17(3)3
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.1 Analysis of Classified Points

he cluster center is defined as the mean of the vectors
ontained in the cluster, and then the cluster center repre-
ents all of the vectors contained in the cluster. Thus, the
istance between the input vector and the cluster center is
sually used to measure the distance between the input vec-
or and the cluster. Let cluster Ci contain mi vectors,

i�1� ,Xi�2� , . . . ,Xi�mi�, and let x be an input vector. The
istance between x and Ci, Center�Dist�x ,Ci�, is then de-
ned as

enter � Dist�x,Ci� = 	x − Si	 , �15�

here Si denotes the cluster center of Ci. Furthermore, the
luster center is popularly used to classify the input vector
n the decision tree, such as the CFDT. However, two cases
xist in which the cluster center cannot classify the input
ectors well in the decision tree. Figure 1 shows one such
ase, in which the vectors are variant in the large cluster,
eaning that the single cluster center cannot adequately

epresent all the vectors in the large cluster. In the other
ase, the cluster center cannot significantly represent all the
ectors contained in the cluster with nonspherical shape
nd therefore cannot classify the input vector well in a de-
ision tree designed with nonspherical clusters. These
bove two cases indicate that the cluster center is not the
est approach for classifying input vectors in a decision
ree.

Before designing the classified point of the cluster, the
istance measure between the input vector x and the cluster
, Vector�Dist�x ,C �, is defined as follows:

(a)

(c)

Fig. 3 Comparisons of two distance mea
Center�Dist�x ,C1��Center�Dist�x ,C2�, and �b�
i i

ournal of Electronic Imaging 033017-
Vector � Dist�x,Ci� = min
1�k�mi

	x − Xi�k�	 . �16�

Figure 3 shows two examples, the large cluster and the
clusters with nonspherical shape, to compare two distance
measures, Vector�Dist and Center�Dist. In Figs. 3�a� and
3�c�, the input vector x is wrongly classified to C2 by the
Center�Dist measure, but is accurately classified to C1 by
the Vector�Dist measure as in Figs. 3�b� and 3�d�. From Fig.
3, the Vector�Dist is better than the Center�Dist for classi-
fying the input vectors between the two clusters. However,
the Vector�Dist has a higher time complexity than the
Center�Dist. The time complexities of Vector�Dist and
Center�Dist are O�mi� and O�1�, respectively.

To reduce the time complexity of the Vector�Dist mea-
sure, Eq. �16� should be simplified. The nearest points of
cluster Ci are first defined as follows. The nearest points in
Ci are vectors closest to other clusters. Let X j�h��Cj be
one of the vectors in Cj. The Euclidean distances between
Xj�h� and vectors contained in cluster Ci are calculated. Let
Xi�r� satisfy

	X j�h� − Xi�r�	 = min
x��k��Ci

	Xj�h� − Xi�k�	, i � j . �17�

The vector Xi�r� can then be relabeled as X̂i�r�, which is
regarded as the nearest point of cluster Ci. Let the cluster Ci

contain f i nearest points, X̂i�1� , X̂i�2� , . . . , X̂i�f i�, and let the
input vector x belong to Cj. Equation �16� can be simplified
as

(b)

(d)

Center�Dist and Vector�Dist: �a� and �c�
� Center�Dist�x ,C1��Vector�Dist�x ,C2�.
sures,
and �d
Jul–Sep 2008/Vol. 17(3)4
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ector � Dist�x,Ci� = min
1�k�mi

	x − Xi�k�	 = min
1�l�f i

	x − X̂i�l�	 .

�18�

he time complexity of Vector�Dist�x ,Ci� is reduced to
�f i�. Notably, f i�mi.
This paper proposes the classified point to replace the

luster center to classify the input vectors in the decision
ree. The classified point of the cluster is defined as follows.
et T be the NCFDT. Except for the root node in T, each
ode contains a classified point in the NCFDT. Let z nodes,

1 , t2 , . . . , tz, have the same parent node in T, and let these z
hild nodes be represented by z clusters, C1 ,C2 , . . . ,Cz. Let
luster Ci contain mi vectors, Xi�1� ,Xi�2� , . . . ,Xi�mi�. Let

Pi be the classified point in the cluster Ci, for 1� i�z. The
lassified point Pi in the cluster Ci thus satisfies

Xi�l� = Pi	 � min
1�j�z

i�j

	Xi�l� − Pj	 �19�

here Xi�l��Ci, 1� l�mi. If classified point Pi satisfies
q. �19�, then Pi can replace the cluster center to represent
ll vectors contained in cluster Ci.

Let Pi be the classified point of cluster Ci. The distance
easure, CP�Dist�x ,Ci�, is defined to calculate the dis-

ance between the input vector x and the cluster Ci with the
lassified point. Then,

P � Dist�x,Ci� = 	x − Pi	 . �20�

he time complexity of CP�Dist�x ,Ci� is O�1� as that of
enter�Dist�x ,Ci�. If the classified point Pi approaches the
earest points of cluster Ci, then the classified point Pi in Ci
s also close to the other clusters. The following section
escribes how to find the classified point in a cluster by the
roposed CPS algorithm.

.2 Design of CPS
n traditional decision trees, including the CFDT, each node
an be represented by a cluster center. Therefore, the input
ector traces the decision tree from the root node to a leaf
ode by comparing the input vector to the cluster center
ncluded in the node. However, in the NCFDT, the classi-
ed point instead of the cluster center is used for compari-
on to the input vector. The CPS is proposed to search for
he classified point in each cluster; this process is as fol-
ows. There are two stages to design the CPS. In the first
tage, many nearest points are selected from each cluster. In
eneral, these nearest points in the cluster are also the vec-
ors closest to other clusters. The second stage of the CPS is
genetic algorithm that searches for the classified point of

ach cluster, and the classified point is close to these near-
st points in each cluster.

The algorithm of the first stage of CPS, namely CPS-
first stage�, is described for searching the sets of nearest
oints in the cluster.

Algorithm: CPS(first stage)
nput: Let z nodes, t1 , t2 , . . . , tz, have the same parent node in

the decision tree, and let these z nodes be represented
by z clusters, C1 ,C2 , . . . ,Cz.

utput: Sets of nearest point of cluster Ci, ��Ci�, for 1� i�z.
ournal of Electronic Imaging 033017-
Step 1. For each cluster Ci, for 1� i�z, do the following.

Step 1.1. Set ��Ci� to empty.

Step 1.2. For each vector, Xj�h��Cj, where i� j, do
the following.

Calculate the Euclidean distances
between Xj�h� and vectors contained in
cluster Ci. Let Xi�r� satisfy Eq. �17�. If
Xi�r� is not in the set, ��Ci�, Xi�r� is
regarded as a nearest point in cluster Ci,
and Xi�r� is added to set ��Ci�.

Step 2. Output sets, ��Ci�, for 1� i�z. End.

Figure 4 shows an example illustrating the nearest
points. Let the vectors in node t of the decision tree be
clustered into three clusters, C1, C2, and C3, using the FCM
�Fig. 4�a��. In Fig. 4�b�, each vector in a solid-line circle
represents the nearest point.

The second stage of the CPS, namely, CPS�second
stage�, is a genetic algorithm that searches for classified
point Pi in cluster Ci using set ��Ci�. The genetic algorithm
consists of an initialization step and many generations.
Each generation consists of three phases, namely, reproduc-
tion, crossover, and mutation. The following describes how
to search for classified point Pi in cluster Ci by the CPS-
�second stage�.

3.2.1 Initialization step
Let Si= �Si,1 ,Si,2 , . . . ,Si,n��Rn and Pi= �Pi,1 , Pi,2 , . . . , Pi,n�
�Rn be two n-dimensional vectors that are the center and
classified point in cluster Ci, respectively. In the initializa-
tion step, a population of N strings is randomly generated
randomly. Each string contains n values, Pi,1 , Pi,2 , . . . , Pi,n,
that represent these n features of Pi. Let G
= �G1 ,G2 , . . . ,Gn� be a string in the population. Then,

Gk = Si,k + 	k, for 1 � k � n , �21�

where 	k is generated randomly. Each string represents a
solution for Pi.

3.2.2 Reproduction phase
If string G is a good solution to represent the classified
point Pi of cluster Ci, then each vector Xi�l��Ci satisfies
the follow:

	Xi�l� − Pi	 � min
1�j�z

i�j

	Xl�l� − X j�k�	 . �22�

Let �G be the number of vectors that satisfy Eq. �22� in
cluster Ci. Then,

�G = �
k=1

mi

�k, �23�

where, if vector Xi�l��Ci satisfies Eq. �22�, �k is set to 1;
otherwise, �k is set to 0. The first design issue concerning
the fitness function emphasizes that all vectors in a cluster
should be closer to its classified point rather than other
clusters. Thus, � must be as large as possible. If � =m ,
G G i

Jul–Sep 2008/Vol. 17(3)5
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lassified point Pi can represent all vectors in cluster Ci.
The second design issue of the fitness function empha-

izes that classified point Pi should be close to these nearest
oints in ��Ci�. The classified point is required to be close
o the nearest points in a cluster to reduce classification
rror in regions between clusters. Let ��Ci�
�X̂i�1� , X̂i�2� , . . . , X̂i�f i�� consist of f i nearest points in
luster Ci. Then, 
G is defined as

G =
�k=1

f i 	Pi − X̂i�k�	
f i

, �24�

hich is emphasized as small as possible in the fitness
unction.

To summarize these two design issues, the fitness func-
ion for string G is defined as

itness�G� = 

�G

mi
if �G � mi

1 +
�


G
if �G = mi

� , �25�

here � is a constant. In Eq. �25�, if �G�mi, the classified
oint Pi cannot represent all vectors in cluster Ci, and
itness�G� is then set to a small value within �0, 1�; other-
ise, Fitness�G� exceeds 1. After the fitness of all strings in

he population is calculated, the reproduction operator is
mplemented using a roulette wheel with slots sized accord-
ng to fitness.

(a)

Fig. 4 Example illustrating the classified points
the nearest points in three clusters, and �c� the
ournal of Electronic Imaging 033017-
3.2.3 Crossover and mutation phases

Two random numbers in �1,n� are generated to determine
which values of two strings are to be interchanged in the
crossover phase. Furthermore, in the mutation phase, the
value of each string G in the population are chosen from
�1,n� with a probability to do the mutation. Each chosen
value is added to a constant generated randomly.

After the genetic algorithm is applied to cluster Ci, the

string Ĝ with the best fitness, which represents the best
solution for Pi, is reserved. Figure 4�c� shows an example
that illustrates the classified points in clusters.

The CPS algorithm is used to find the classified point in
a cluster whose time-complexity is analyzed as follows. Let
there be z clusters, and the total number of all vectors con-
tained in these z clusters be m. Let the average number of
vectors contained in Ci be mi. The time complexity of the
CPS�first stage� is dominated by step 1, which takes
O�mmi� time to calculate the Euclidean distances between
pairs of vectors when determining the nearest points of
cluster Ci. In the CPS�second stage�, time complexity is
dominated by the calculation of the fitness function. It takes
O�mmi� time to calculate the value of �G. Let N denote
population size. Thus, the reproduction phase takes
O�Nmmi� time in the worst case. Suppose that the genetic
algorithm runs Q generations, time complexity will be
O�QNmmi�. Hence, the time complexity of the whole algo-
rithm is O�QNmmi�.

Figure 5 illustrates the design of NCFDT with classified
points. Figure 5�a� shows the training data set with 50 train-

(b)

(c)

e clusters: �a� the vectors in three clusters, �b�
ed points in three clusters.
in thre
classifi
Jul–Sep 2008/Vol. 17(3)6
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ng vectors, which can be classified into two classes, with
5 training vector for each class. Figure 5�b� shows the
lustering results when the NCFDT is designed, and Fig.
�c� displays the corresponding decision tree of NCFDT.
able 1 lists the cluster centers and classified points con-

ained in the nodes of the NCFDT tree.

.3 Classification Method of the NCFDT with
Classified Points

efore describing the classification method for the NCFDT
ith classified points, the output class represented by each

eaf node is defined. Let the NCFDT T be designed for
andling the M-classes problem. Let leaf node t in T con-
ain mi vectors, Xi�k�, for 1�k�mt, and let the corre-
ponding output of class Xi�k� denote Yi�k�. Then,
utput�j�, for 1� j�M, is calculated as

utput�j� = �
k=1

mi

ui�Xt�k��� j�k� , �26�

here ut�Xt�k�� denotes the degree of membership such
hat Xt�k� is in node t, which is defined in Eq. �4�, and

j�k� = �1 if Yi�k� = j

0 otherwise

 . �27�

hen, output class wt, assigned to the leaf node t, is defined
s

t = arg max
1�j�M

Output�j� . �28�

he classification method of NCFDT with classified points
s as follows:

Algorithm: Classification�NCFDT�Classified�Points
nput: Input vector, x. The NCFDT T, in which each node

contains a classified point.

utput: The output of class.

tep 1. Let t be the root node of T.

tep 2. While t is not a leaf node in T

Step 2.1. Let node t contain z child nodes, t1 , t2 , . . . , tz,
and let each node ti contain a singleclassified
point, Pi. Calculate the ui�x� of node ti, as
follows.

ui�x� =
1

�j=1
z �	x − Pi	/	x − Pj	�

for 1 � i � z.

Step 2.2. Let k=arg max
1�i�z

ui�x�. Set t= tk.

tep 3. Output the class wt assigned to the leaf node t.

The time complexity of the classification algorithm of
he NCFDT is as follows. Suppose that the total number of
eaf nodes in the NCFDT is n; the average number of child
odes of each internal node in the NCFDT is z. Then, time
omplexity is approximately O�z�logz�n��� for the classifi-
ation algorithm of the NCFDT.
ournal of Electronic Imaging 033017-
4 Experiments
Ten data sets were used to test the proposed NCFDT and
four established decision trees, namely, CFDT, MB,14

Fuzzy-ID3�I�,12 and Fuzzy-ID3�II�.15 All these decision
trees can be classified as single variable and multivariable,
according to the design of conception. NCFDT and CFDT
are multivariable decision trees, and the other three meth-
ods, MB, Fuzzy-ID3�I�, and Fuzzy-ID3�II�, are single-

(a)

(b)

(c)

Fig. 5 Example to illustrate the decision tree of NCFDT: �a� two-
dimensional training data, �b� the clustering results of NCFDT, and
�c� the decision tree of NCFDT.
Jul–Sep 2008/Vol. 17(3)7
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ariable decision trees. The multivariable decision trees
ost effectively classify the vectors with multivariable en-

ities characterized by high homogeneity �low variability�.
n contrast with single-variable decision trees, which con-
ider one variable �feature� at a time, a multivariable deci-
ion trees involves all variables that are considered at each
ode.

Section 4.1 describes the ten data sets used in the ex-
eriments. Section 4.2 shows the performance of compari-
on between NCFDT and other methods.

.1 Data Sets
en data sets, comprising eight from the UC Irvine
epository,20 the texture data set shown in Fig. 6, and the
peech data set extracted from the ISOLET database, were

able 1 The x- and y-axis of the cluster centers and classified points
ontained in the nodes of the NCFDT tree.

Clusters Cluster Centers Classified Points

C1 �10.21, 15.35� �18.35, 19.93�

C2 �30.54, 23.47� �24.45, 22.37�

C3 �10.33, 35.65� �11.62, 28.32�

C4 �12.54, 10.53� �13.43, 12.37�

C5 �29.42, 26.74� �32.65, 21.76�

C6 �30.37, 11.39� �31.02, 15.32�

C7 �10.43, 6.47� �12.56, 9.54�

C8 �14.54, 12.63� �13.03, 9.98�

C9 �27.43, 25.76� �30.21, 26.33�

C10 �31.65, 26.55� �31.87, 26.43�

ig. 6 Thirty textures from the Brodatz album. Row 1: D3, D4, D6,
9, D11, D16. Row 2: D19, D21, D24, D29, D34, D36. Row 3: D52,
53, D55, D57, D65, D68. Row 4: D74, D77, D78, D79, D82, D83.
ow 5: D84, D92, D95, D102, D103, D105.
ournal of Electronic Imaging 033017-
adopted in this experiment. Table 2 lists the features of ten
data sets. In the texture data set, 30 texture images in Ref.
21 �Fig. 6�, were used to test the NCFDT. Each texture
�512�512 pixels with 256 gray levels� was divided into
blocks with size 16�16 pixels. Each block was then trans-
formed by a Haar wavelet transform22 to obtain four sub-
bands. The mean values �mv� and standard deviations �sd�
of the four subbands were calculated as follows:

mv =
1

N2 �
i,j=1

N

v�i, j� , �29�

sd =� 1

N2 �
i,j=1

N

�v�i, j� − mv�2, �30�

where N denotes the size of the subband �set to 8 in this
experiment� and v�i , j� indicates the wavelet coefficient at
location �i , j� in the subband. Therefore, each block con-
taining four subbands can be represented by a feature vec-
tor with eight values, because two values, sd and mv, exist
for each subband.

In the speech data set, the ISOLET database using the 26
letters of the English alphabet was used in the isolated word
recognition test. The speech data set consisted of 6240 ut-
terances from 120 speakers. Each utterance was sampled at
16 kHz with a 16-bit resolution. A Hamming window of
20 ms with 50% overlap was used to process each utterance
further by fast Fourier transform �FFT�. Each utterance was
divided into 15 Hamming windows, each represented by 32
FFT coefficients. That is, each utterance consisted of 480
features.

4.2 Performance of NCFDT
A stratified tenfold cross-validation was performed for each
data set. The stratified tenfold cross-validation breaks the
data set into ten disjoint subsets, each with a class distribu-

Table 2 Description of data sets.

Data Set No. Features No. Vectors No. Classes

Glass 9 214 7

Hepatitis 19 155 2

Ionosphere 34 351 2

Iris 4 150 3

Pima 8 768 2

Abalone 8 4177 29

Pendigits 16 10992 10

Letter 16 20000 26

Texture 8 30720 30

Speech 480 6240 26
Jul–Sep 2008/Vol. 17(3)8
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ion approximating that of the original data set. For each of
he tenfolds, an ensemble was trained using nine of subsets
nd tested on the held out subset. The testing accuracy of a
ecision tree thus denotes the average recognition rate, ten-
old. Furthermore, the CPS algorithm was adopted to

Fig. 7 Comparative analysis for several method
iris, �e� pima, �f� abalone, �g� pendigitis, �h� lette
ournal of Electronic Imaging 033017-
search for the classified point of each node in NCFDT�CP�.
The time complexity of CPS is dominated by the second
stage of CPS, called CPS�second stage�. In the CPS�second
stage�, the population size was set to 100, and the crossover
and mutation probabilities were set to 80 and 5%, respec-

glass data set, �b� hepatitis, �c� ionosphere, �d�
xture, and �j� speech data sets.
s: �a�
r, �i� te
Jul–Sep 2008/Vol. 17(3)9
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ively. The genetic algorithm in CPS�second stage� was run
ver 300 generations, and the best solution obtained from
hese 300 generations was retained. The users were nor-

ally satisfied with the efficiency of CPS�second stage�.
The NCFDT was compared to the other single-variable

nd multivariable decision trees. First, NCFDT was com-
ared to the multivariable decision tree, CFDT. To compare
hese two methods fairly, the same number of nodes �stor-
ge� was applied to design the decision trees for each data
et. Table 3 lists the number of nodes used in designing the
CFDT and CFDT for each of the ten data sets. Figure 7

hows the recognition rates of NCFDT and CFDT. In Fig.
, NCFDT denotes that the cluster center in each node was
sed to classify the input vector, and NCFDT�CP� indicates
hat the classified point contained in each node was used to
lassify the input vector. Additionally, the classified points
an be applied to the design of CFDT, which is denoted as
FDT�CP�. The following two conclusions can be obtained

rom Fig. 7: �i� NCFDT�CP� and CFDT�CP� outperformed
CFDT and CFDT, respectively, for each of the ten data

ets. This is because the classified point in each cluster was
lose to the other clusters, and the classification error in the
egions between any two pairs of clusters could thus be
educed in the decision tree. �ii� NCFDT�CP� and NCFDT
utperformed CFDT�CP� and CFDT, respectively, for each
f the ten data sets. This is because the growth method of
CFDT is based on the classification error rate and the

verage number of comparisons of the decision tree,
hereas that of CFDT only considers the classification er-

or rate. In the NCFDT, the decision tree is grown by se-
ecting the node with the largest value of � to be split.
igure 8 also shows that the average numbers of compari-
ons in NCFDT and NCFDT�CP� are smaller than those in
FDT and CFDT�CP�, respectively. These two findings re-
eal that NCFDT outperformed CFDT.

NCFDT was then compared to three single-variable de-
ision trees, MB, Fuzzy-ID3�I�, and Fuzzy-ID3�II�. Figures
�a�–7�h� reveal that the users were not easily able to de-

Table 3 Number of nodes used to design the NCFDT and CFDT.

ata Set No. Nodes

lass 20

epatitis 15

onosphere 25

ris 10

ima 30

balone 60

endigits 50

etter 60

exture 60

peech 80
ournal of Electronic Imaging 033017-1
termine which one of these four methods, NCFDT�CP�,
MB, Fuzzy-ID3�I�, and Fuzzy-ID3�II�, was the best deci-
sion tree. However, NCFDT�CP� and CFDT�CP� were ob-
served to outperform MB, Fuzzy-ID3�I�, and Fuzzy-
ID3�II�, from Figs. 7�i� and 7�j�. The reason is that the
variables in the vectors had high homogeneity for texture
and speech data sets. That is, vectors with high homogene-
ity could not be classified in single-variable decision trees,
which consider one variable at a time. The multivariable
decision trees, namely, NCFDT�CP� and CFDT�CP�, clas-
sified the vectors contained in the texture and speech data
sets more effectively than the single-variable decision trees.
However, one disadvantage of the multivariable decision
trees is that they took a long time to classify each input
vector. In contrast to single-variable decision trees, in
which one variable is considered at a time, a multivariable
decision tree considers all variables at each node of the
tree.

5 Conclusion
The NCFDT is an efficient decision tree that has been ap-
plied to many classification applications. The growing
method of the NCFDT selects one node to split according
to the classification error rate and the average number of
comparisons of the decision tree, whereas the growing
method of the CFDT only considers classification error
rate. In experiments, the NCFDT performed better than the
CFDT. Furthermore, the classified point replaces the cluster
center when classifying the input vector in the decision
tree. In this paper, the CPS algorithm is proposed to search
for the classified point in a cluster. To reduce further the
classification error rate in the NCFDT, the CPS algorithm
emphasizes that the classified point in a cluster is close to
other clusters. In the experiments, the NCFDT with classi-
fied points has a smaller classification error rate than the
NCFDT with cluster centers when both trees have the same
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umber of comparisons. The CPS algorithm can also be
pplied to the CFDT; however, the CFDT with classified
oints performs better than the CFDT with cluster centers.
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