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Abstract. Markov chain models (MCMs) were recently adopted in
many recognition applications. The well-known clustering algorithm,
the k-means algorithm, is used to design the codebooks of the
MCM, and then each code word in the codebook is regarded as one
state of MCM. However, users usually have no idea how to deter-
mine the number of states before the design of the MCM, and there-
fore doubt whether the MCM produced by the k-means algorithm is
optimal. We propose a new MCM based on the genetic algorithm for
recognition applications. Genetic algorithms combine the clustering
algorithm and the MCM design. The users do not need to define the
size of the codebook before the design of the MCM. The genetic
algorithm can automatically find the number of states in MCM, and
thereby obtain a near-optimal MCM. Furthermore, we propose the
fuzzy MCM (FMCM) and the fuzzy genetic algorithm (FGA) to en-
hance the recognition rate. Experimental results show that the pro-
posed MCM outperforms the traditional MCM and other texture and
speech recognition methods. © 2006 SPIE and IS&T.
�DOI: 10.1117/1.2234731�

1 Introduction
The hidden Markov model �HMM� and its variants have
recently been successfully adopted in recognition and clas-
sification applications.1–4 However, the HMM has two limi-
tations. One such is that a high computation cost is required
to calculate the likelihood function of a texture HMM. If an
input vector consists of T features, then the likelihood score
for the N-state HMM takes N�N+1��T−1�+N multiplica-
tions and N�N−1��T−1� additions to compute the likeli-
hood score for the N-state HMM. The second limitation is
that the users must determine the number of states before
designing the HMM. However, the users cannot easily de-
termine the number of states in HMM.

This paper applies the Markov chain model �MCM� to
texture and speech recognition to reduce the computation
time and thus improve the overall performance of HMM. In
an MCM, the computation time required to evaluate the
likelihood score is T−1 multiplications, which is less than
that required in HMM. The MCM is designed in two steps.5

First, a clustering algorithm such as the k-means algorithm6

is applied to the training data set to design the MCM code-
book. Then, each code word in the codebook is regarded as
a state in MCM. Step 2 of the MCM design continues after
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the k-means algorithm creates the codebook. The initial
state and state-transaction probabilities of MCM are esti-
mated to achieve the highest possible likelihood function.
The MCM is thus produced after these two steps are fin-
ished. Figure 1 shows an example of this process. Let the
training data set be a collection of 2-D vectors, as shown in
Fig. 1�a�. Notably, the real speech and texture data can be
represented as vectors, which normally have more than two
dimensions. Assume that the user designs an MCM with
three states. The k-means algorithm is then applied to the
training data set to search for three clusters, C1, C2, and C3,
which are shown in Fig. 1�b�. A cluster indicates a group of
vectors. The variation is high between the different clusters,
and is low within each cluster. Each cluster center Si can be
obtained by calculating the mean of vectors contained in
the cluster Ci. The cluster center Si can represent all of the
vectors contained in the cluster Ci because the vectors
within the same cluster have low variation. The unknown
vector is compared with these three centers—S1, S2, and
S3—to determine the closest one to it. The collection of
these three centers—S1, S2, and S3—can also be regarded
as a codebook V and each center Si can be represented as a
code word vi in V. Each code word vi in the MCM is also
regarded as a state in the MCM. The following section
describes the design of the initial state and state-transaction
probabilities between these three states. The MCM with
three states is then produced as shown in Fig. 1�c�.

However, the users cannot easily determine the number
of states before the MCM is designed, since the k-means
algorithm requires the users to input the number of clusters
in the data set, which the users usually do not know. Hence,
the users are forced to try different numbers of clusters
when using these clustering algorithms. This approach is
tedious and is likely to produce poor clustering results, es-
pecially when the number of clusters is large and not easy
to guess. The number of states in MCM is generally set to
a fixed value. However, the fixed number of states is not
suitable for each MCM. Additionally, k-means is an itera-
tive hill-climbing algorithm with a solution depending on
the initial clustering. Although k-means has been applied to
many practical clustering problems successfully, it may fail
to converge to a local minimum under certain conditions.7
However, users usually doubt whether the MCM produced
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is optimal, because k-means is used only to design the
codebook, and it never maximizes the likelihood function
of the MCM.

Genetic algorithms search in complex and large solution
spaces and provide a near-optimal solution for an optimi-
zation problem. The genetic strategy uses a fitness function
to evaluate the goodness of a chromosome. A chromosome
represents a possible solution, and chromosomes with
greater fitness function values are more likely to be repro-
duced in the next generation. This paper proposes a genetic
algorithm that combines a clustering algorithm and an
MCM design. The users do not have to set the number of
states in the MCM. The genetic algorithm can automati-
cally determine the proper number of states in MCM by

Fig. 1 Design of the traditional MCM by the k-means algorithm: �a�
training data set, �b� three clusters generated by the k-means algo-
rithm, and �c� MCM with three states.
maximizing the likelihood function of MCM. Additionally,
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the smoothing parameters are applied to the MCM and the
genetic algorithm to enhance the recognition rate. Thus,
this paper also proposes the fuzzy MCM �FMCM� and
fuzzy genetic algorithm �FGA�. The experimental results
show that the proposed MCM based on the genetic algo-
rithm outperforms the traditional MCM based on the
k-means algorithm in texture and speech recognition.

The rest of this paper is organized as follows. Section 2
describes the basic design of the MCM. Section 3 then
describes the design of the MCM based on the genetic al-
gorithm. Next, Sec. 4 presents the designs of the FMCM
and the FGA. Section 5 summarizes the experimental re-
sults. Conclusions are finally drawn in Sec. 6.

2 Basic Concept of the MCM
Let X=X1, X2 , . . . ,Xt , . . . denote a series in discrete time,
where each Xt is the t’th variable in the observation. The
probability that variable Xt takes value xt generally depends
on the previous variables. Thus, the conditional probability
that variable Xt takes value xt is given by

P�Xt = xt�Xt−1 = xt−1,Xt−2 = xt−2, . . . ,X1 = x1� . �1�

However, such a model is too complex for speech applica-
tions. To reduce the complexity of Eq. �1�, MCM assumes
that variable Xt takes value xt based on the immediately
preceding outcome xt−1. Then, the probability in Eq. �1� can
be rewritten as

P�Xt = xt�Xt−1 = xt−1� . �2�

The design of the traditional MCM is described as fol-
lows. Let x= �x1 ,x2 , . . . ,xT� denote an observation, where
each xi denotes a vector in x. In MCM, each vector xi can
be mapped to a codebook V consisting of M code words,
given by v1, v2 , . . . ,vM. As the time duration of x is limited,
a Markov chain can be considered to have a limited dura-
tion, given by X=X1, X2 , . . . ,XT, with a state space defined
in the codebook V. That is, each code word in V is a spe-
cific state of the Markov chain, allowing x1, x2 , . . . ,xT to be
represented as a sequence of states. The initial state and
state-transaction probabilities of MCM can then be defined
as

q�i� = P�X1 = vi� i = 1,2, . . . ,M , �3�

p�i, j� = P�Xt = v j�Xt−1 = vi� i, j = 1,2, . . . ,M . �4�

Let �= �q̂ , p̂� denote an MCM, where q̂= �q�i�� and p̂
= �p�i , j��. Then, the probability

P�X = x��� = q�x1��
t=2

T

p�xt−1,xt� �5�

is used to measure the likelihood of observing sequence x
in the MCM �. In recognition applications, an unknown
observing sequence x is the input for all the MCMs and,
then, the MCM with the largest probability defined in Eq.
�5� is regarded as the recognition result of x.

The user must give the number of states, in the model,
given by M, before designing the traditional MCM. The

k-means algorithm, which is a well-known clustering
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method, is then applied to the training data set to obtain M
clusters. The center of each cluster is regarded as a code-
word in the codebook V. Moreover, the maximum likeli-
hood method can be adopted to estimate the Markov chain
parameters. Let the set Z= �x1 ,x2 , . . . ,xN� contain N training
observations, with each training observation xf represented
by nf vectors, x1

f ,x2
f , . . . ,xnf

f . Then, the joint likelihood
function should be maximized.

P�Z��� = �
f=1

N

P�x f��� , �6�

where P�x f ��� is defined in Eq. �5�. As in Ref. 5, the fol-
lowing estimates can be obtained by taking the logarithm of
Eq. �6� and using the Lagrangian method:

q�i� =
mi

	
k=1

M

mk

, �7�

and

p�i, j� =
mi,j

	
k=1

M

mi,k

, �8�

where mi indicates the number of vectors x1
f , for 1� f �N,

mapped to the codeword vi, and mi,j indicates the number
of vectors that the code word v j comes from the code word
vi in x f for 1� f �N.

The traditional design of the MCM �Ref. 5� is described
as follows.

Input
Z= �x1 ,x2 , . . . ,xN� containing N observations, where each
observation x f contains nf vectors, for 1� f �N ·M: num-
ber of states.

Output
MCM � with M states.

Step 1. Parameter M is the input of the k-means algo-
rithm. Then, the k-means algorithm is applied to
all vectors in Z to generate M clusters. Each clus-
ter is regarded as the state of the MCM.

Step 2. Calculate the initial state and state-transaction
probabilities, q�i� and p�i , j�, as defined in Eqs. �7�
and �8�.

Step 3. Output the MCM � with M states.
Step 4. End.

3 Design of the Markov Chain Models Based on
the Genetic Algorithm

The traditional MCM has two drawbacks. First, the users
must give the number of states before designing the MCM
before the k-means algorithm can be applied to the training
data set. Unfortunately, the users usually do not know the
number of clusters in the training data set, and therefore

cannot easily decide the number of states in the MCM.
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Therefore, selecting the number of states in MCM is a te-
dious task of trial and error. For example, the number of
states M is set to 128 in Ref. 5. If the number of states in
MCM is too large, then the values of q�i� and p�i , j� are too
low, because the values of both q�i� and p�i , j� depend on
the number of states in MCM. Additionally, if the number
of states in MCM is too small, then the training data set
used to design the MCM is divided into a small number of
large clusters. However, the training data cannot easily be
represented in a large cluster using only one center, espe-
cially, when the large cluster consists of many different
training data. The second drawback of the traditional MCM
is that the users cannot be sure that the MCM obtained is
optimal. The users must maximize the value of Eq. �6�
when designing the MCM, but cannot know whether the
codebook produced by the clustering algorithm, such as the
k-means algorithm, is suitable for the MCM, because the
k-means algorithm is used only to find a clustering result
from the training data set, and it never emphasizes maxi-
mizing the value of Eq. �6� during the of the MCM code-
book design.

This section proposes the genetic algorithm to design the
traditional MCM. The genetic algorithm can automatically
search the proper number of states, and seeks to maximize
the value of Eq. �6� during the design of the MCM code-
book. Thus, the MCM produced by the genetic algorithm is
better than that produced by the k-means algorithm. The
genetic algorithm design is described as follows. Assume
that z training data sets, Z1 ,Z2 , . . . ,Zz, are used to design z
MCMs, �1 ,�2 , . . . ,�z, respectively. To enhance the recog-
nition rate of the applications, the design aim of the genetic
algorithm is to enhance the distinction between the z

Fig. 2 Flow chart of the genetic algorithm for designing the MCM �k.
MCMs. The genetic algorithm in the proposed method de-
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signs one MCM at a time. This paper describes the design
of the MCM �k for 1�k�z, by using the genetic algo-
rithm, which is shown in Fig. 2. The genetic algorithm
consists of an initialization step and iterations with three
phases in each generation.

3.1 Initialization Phase

Let Zk= �x1 ,x2 , . . . ,xNk� consist of Nk training observations,
where each observation x f is represented by nf sequential
vectors, x f = �x1

f ,x2
f , . . . ,xnf

f �, for 1� f �Nk. That is, Zk con-
sists of 	 f=1

Nk nf vectors. Set Z�=�i�k

1�i�z
Zi, where Z� consists

of 	i=1

i�k

z
	 f=1

Ni nf vectors. A good MCM maximizes the likeli-

hood function of the model �k when inputting the training
observations in Zk, and minimizes it when inputting the
training observations in Z�. To achieve the performance of
the genetic algorithm for processing the large data set, the
pairwise nearest-neighbor �PNN� algorithm8 is first applied
to the training data set Zk. The two closed features �or clus-
ters� in PNN can be merged to form a new cluster, and this
merge processing continues until the desired number of
clusters is obtained. Denote m as the number of clusters,
B1, B2 , . . . ,Bm, obtained after the PNN is applied to the
training data set, and let ui indicate the center of cluster Bi,
for 1� i�m. Each cluster Bi is regarded as a component,
and is divided during the genetic algorithm. That is, the
genetic algorithm only clusters m components �m�Nk�.
The PNN algorithm can be applied to reduce the computa-
tion time in the genetic algorithm. Therefore, the genetic
algorithm can efficiently process the large data set.

A population of H strings is randomly generated in the
initialization step of the genetic algorithm. The length of
each string is given by m, which is the number of the com-
ponents obtained by the PNN algorithm. The algorithm
generates H strings, where the 1’s in the strings are uni-
formly distributed within �1,m�. Each string represents a
subset �B1 ,B2 , . . . ,Bm�. If Bi is in a subset, then the i’th
position of the string is 1, and is 0 otherwise. Each Bi in the
subset is a seed to generate a cluster.

The method for generating a clustering from the seeds is
described before the three phases are elucidated. Let R
= �b1 ,b2 , . . . ,bm� be a bit string in the population. Each bit
bi indicates the corresponding component Bi. The string R
then includes two sets of components, L1 and L2, which are
defined as

Table 1 The speech recognition rates

Methods
MCM

�KM&fixed� MCM�KM� MCM

Average
recognition
rates �%�

89.8 92.1 9
L1 = �Bi�bi = 1,1 � i � l1� , �9�
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L2 = �Bj��bj = 0,1 � j � l2� , �10�

where l1+ l2=m. In L1, l1 components, Bi for 1� i� l1, are
used as the seeds to generate l1 clusters. Initially, each clus-
ter Ci contains only one component, Bi, and then the center
Si of cluster Ci is set to ui. The components in L2 are then
considered one at a time, and the Euclidean distances be-
tween each component and the centers Si, for 1� i� l1 are
calculated. Then,

Bj� � Ci if 
uj� − Si
 � 
uj� − Sq
, for 1 � q � l1. �11�

After each Bj� is classified into the cluster Ci to form the

new cluster Ĉi, the new center Ŝi is updated as

Ŝi =

	
Bj��Ĉi

�Bj��uj�

	
Bj��Ĉi

�Bj��
, �12�

where �Bj�� indicates the number of features in the compo-
nent Bj�. The components in L2 yield l1 clusters, denoted Ci
for 1� i� l1, the string R. Notably, the center of each clus-
ter Ci is represented as the code word in the codebook V,
and the number of code words in V is regarded as the

number of states in MCM.

3.2 Reproduction Phase

The main issue of the reproduction phase is the design of
the fitness function for the string R. Let string R generate l1
clusters, Ci for 1� i� l1, and consider the center of each
cluster Ci as a state in MCM. Thus, the MCM �k is gener-
ated with l1 states from the string R. Calculate q�i� and
p�i , j� as defined in Eqs. �7� and �8� for the MCM �k. The
fitness function of string R is then defined as,

Fitness�R� =
P�Zk��k�
P�Z���k�

, �13�

where P�Zk ��k� and P�Z� ��k� are defined as Eq. �6�. Equa-
tion �13� maximizes the likelihood function of the model �k
when the training data set Zk is the input, and minimizes it
when the training data set Z� is the input.

After the fitness of each string in the population is cal-
culated, the reproduction operator is implemented using a

proposed MCMs and the other MCMs.

MCM�FGA� FMCM�GA� FMCM�FGA�

98.3 98.5 99.1
of the

�GA�

7.3
roulette wheel with slots sized according to fitness.
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3.3 Crossover Phase
When the crossover operator is applied to a selected pair of
strings R and Q, then two random numbers e and f in �1,m�
are generated to determine the pieces of strings to be inter-
changed. If e� f , then the bits from position e to position f
of string R are interchanged with the bits in the same posi-
tions of string Q. The crossover operator is applied with
probability Pc for each chosen pair of strings.

3.4 Mutation Phase
During the mutation phase, the bits of the strings in the
population are chosen from �1,m� with probability Pm.
Each chosen bit is then changed from 0 to 1 or from 1 to 0.
That is, if one bit is chosen, then a selected cluster is dis-
carded or produced in a string.

The user may specify the number of generations over
which to run the genetic algorithm before obtaining the

string with the best fitness. Suppose that model �̂ with l̂

states is obtained from the best string R̂ after many genera-

tions. Then, �k= �̂ and Mk= l̂ are set and the MCM �k with
Mk states are obtained.

In the following, we describe how to design z MCMs,
�1 ,�2 , . . . ,�z, by the genetic algorithm.

Input
Training data sets, Z1 ,Z2 , . . . ,Zz, are used to design z
MCMs, �1 ,�2 , . . . ,�z, respectively.

Output
z MCMs, �1 ,�2 , . . . ,�z.

Step 1. Set k=1.
Step 2. Set Z�=�i�k

1�i�z
Zi. The genetic algorithm de-

signs the MCM �k as shown in Fig. 1.
Step 3. Output the MCM �k with Mk states.
Step 4. Set k=k+1. If k�z, then go to step 2.
Step 5. End.

The following algorithm describes how to use the
MCMs when an unknown observation is input.

Input
z MCMs, �1 ,�2 , . . . ,�z, and the unknown observation, xt

= �x1
t ,x2

t , . . . ,xnt

t �, where xi
t is a vector for 1� i�nt.

Output
The MCM, �*� ��1 ,�2 , . . . ,�z�, that is closest to xt.

Step 1. Calculate g=argmax1�k�zP�xt ��k�, where
P�xt ��k� is defined as in Eq. �5�.

Step 2. Set �*=�g. The MCM �* is output.

The time complexity of the genetic algorithm is ana-
lyzed as follows. The genetic algorithm consists of an ini-
tialization step and iterations with three phases in each gen-
eration. Let N be the number of training features. Before
the genetic algorithm is applied to these N features, the
PNN algorithm takes O�N2� time to calculate the distances

between pairs of objects, and O�N� time to find the mini-
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mum. Briefly, the PNN algorithm takes O�N2� to find m
components from these N training features. In the genetic
algorithm, let H denote the size of population, and let m
denote the total number of components. Each component
takes O�m2� time to find the nearest cluster. The time com-
plexity of the genetic algorithm is dominated by the calcu-
lation of the fitness function. The algorithm takes O�Nm2�
time in the worst case. Suppose the genetic algorithm is
asked to run G generations, then the time complexity is
given by O�GNm2�. Hence, the time complexity of the
whole genetic algorithm is O�N2+GNm2�.

The proposed MCM based on the genetic algorithm has
two benefits. First, the genetic algorithm can automatically
generate the proper number of states for each MCM. The
users do not need to give the number of states before de-
signing the MCM in the proposed method, while the
k-means algorithm must have the proper number of states
before designing the traditional MCM. The second advan-
tage of the proposed method is that the MCM designed by
the genetic algorithm is a near- and globally-optimal MCM,
because the genetic algorithm maximizes that the fitness
function defined in Eq. �13�. That is, when the MCM �k is
designed, P�Zk ��k� is maximized in Eq. �13�, making the
observations in Zk close to �k. Additionally, P�Z� ��k� is
minimized, so that the observations in Z� are far from �k.
Thus, the proposed method enhances the recognition rate of
�k. Therefore, the recognition rate of the proposed MCM
based on the genetic algorithm is better than the traditional
MCM based on the k-means algorithm.

4 Design of the FMCMs and the FGA
In the design of the MCM, the amount of training observa-
tions is required to estimate the parameters of the MCM
reliably. However, the currently available training data is
limited, and is not enough to cover all possible data. Thus,
parameter smoothing is applied to the design of the FMCM

Fig. 3 Thirty textures from Brodatz album. Row 1: D3, D4, D6, D9,
D11, D16; row 2: D19, D21, D24, D29, D34, D36; row 3: D52, D53,
D55, D57, D65, D68; row 4: D74, D77, D78, D79, D82, D83; and
row 5: D84, D92, D95, D102, D103, D105.
and the FGA.
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4.1 FMCMs

Let x denote an input vector and let v1, v2 , . . . ,vM represent
the centers of M clusters. In the FMCM, x be a member of
any cluster. The degrees of membership that x has in the
clusters are represented by functions mi�x� for i
=1,2 , . . . ,M, which satisfy the constraints that 0�mi�x�
�1 and 	imi�x�=1. The membership function mi�x� is de-
fined as

mi�x� =
1

	
k=1

M

�
x − vi
/
x − vk
�

. �14�

Using the membership function mi�x� the FMCM can be
estimated as follows. Let the set Z= �x1 ,x2 , . . . ,xN� contain
N training observations and represent each observation x f

as x f = �x1
f ,x2

f , . . . ,xTf

f �. Then, Eq. �6� and �7� can be rede-
fined as Eq. �15� and �16� in FMCM, respectively.

q�i� =
1

N
	
k=1

N

mi�x1
k�, i = 1,2, . . . ,M , �15�

p�i, j� =

	
k=1

N

	
t=2

Tk

mi�xt−1
k �mj�xt

k�

	
k=1

N

	
t=2

Tk

mi�xt−1
k �

, i, j = 1,2, . . . ,M . �16�

Equations �15� and �16� are referred to as fuzzy estima-
tion in FMCM.

4.2 FGA

The FGA is similar to the genetic algorithm described in
Sec. 3. The main difference between the fuzzy and non-
fuzzy genetic algorithms is in their approach of calculating
the cluster centers. The smooth parameters are used to cal-
culate the centers of clusters in the FGA. Let the string R
represent two sets of components, L1 and L2, which are
defined as Eqs. �9� and �10�. In L1, n1 components, Bi for
1� i�n1, are used as the seeds to generate n1 clusters. The
membership function, mj�i�, is used to measure the dis-

Table 2 The number of states

Letters A B C D E

No. states 24 26 25 17 24

Letters N O P Q R

No. states 16 25 16 17 24
tances between component Bj�, in L2 and cluster Ci.
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mj�i� =
1

	
k=1

n1

�
uj� − Si
/
uj� − Sk
�

, �17�

where uj� and Si indicate the centers of component Bj� and
cluster Ci, respectively.

Then, the new center, Ŝi, of the cluster Ci is updated as

Ŝi =

	
Bj��Ci

uj��Bj��mj�i�

	
Bj��Ci

�Bj��mj�i�
, �18�

where �Bj�� indicates the number of objects contained in the
component Bj�. Using Eq. �17� above, the FGA works es-
sential as does the genetic algorithm in Sec. 3.

5 Experiments
Two data sets, speeches and texture images, were used to
test the performance of the proposed MCM based on the
genetic algorithm. The proposed method was compared
with other methods in the applications, speech recognition
and texture image recognition.

5.1 Speech Recognition
The ISOLET database, using the 26 letters of the English
alphabet, was used in the isolated word recognition test.
The training data set consisted of 4680 utterances from 90
speakers, and the testing data set consisted of 1560 utter-
ances from 30 speakers. The ISOLET database was
sampled at 16 kHz with a 16-bit resolution. A Hamming
window of 20 ms with 50% overlap was used to further
process each utterance by fast Fourier transform �FFT�.

ch MCM by using MCM�GA�.

G H I J K L M

27 22 25 26 25 18 18

T U V W X Y Z

16 19 24 18 19 24 25

Table 3 The recognition rates and the computation time of the pro-
posed MCMs and the other HMMs.

Methods DHMM CHMM FMCM�FGA�

Average
recognition
rates �%�

92.5 98.4 99.1

Average
computation
time �second�

230 940 195
of ea

F

25

S

28
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Table 4 The texture recognition rates of the proposed MCMs and Ref. 11.

Recognition Rates �%�

Textures MCM�KM� MCM�GA� MCM�FGA� FMCM�GA� FMCM�FGA� Ref. 11

D3 100 100 100 100 100 —

D4 66.7 75 75 83.3 83.3 —

D6 100 100 100 100 100 —

D9 75 75 75 75 83.3 —

D11 100 100 100 100 100 —

D16 100 100 100 100 100 —

D19 58.3 66.7 75 75 75 —

D21 100 100 100 100 100 —

D24 91.7 100 100 100 100 —

D29 100 100 100 100 100 —

D34 100 100 100 100 100 —

D36 83.3 100 100 100 100 —

D52 83.3 100 100 100 100 —

D53 100 100 100 100 100 —

D55 83.3 91.7 91.7 91.7 91.7 —

D57 100 100 100 100 100 —

D65 100 100 100 100 100 —

D68 100 100 100 100 100 —

D74 100 100 100 100 100 —

D77 83.3 91.7 91.7 91.7 91.7 —

D78 100 100 100 100 100 —

D79 100 100 100 100 100 —

D82 100 100 100 100 100 —

D83 100 100 100 100 100 —

D84 100 100 100 100 100 —

D92 100 100 100 100 100 —

D95 100 100 100 100 100 —

D101 91.7 100 100 100 100 —

D104 75 100 100 100 100 —

D105 100 100 100 100 100 —

Average
recognition
rate

93.05 96.67 96.94 97.22 97.5 96.9
Journal of Electronic Imaging Jul–Sep 2006/Vol. 15(3)033004-7
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Table 1 shows the average recognition rates of 26 letters
by using the proposed method and the other methods. In
Table 1, MCM�KM� denote the MCMs based on the
k-means algorithm. The proposed methods can be repre-
sented as MCM�GA�, MCM�FGA�, FMCM�GA�, and FM-
CM�FGA�, which combine the fuzzy and non-fuzzy genetic
algorithms with fuzzy and non-fuzzy MCMs. To compare
the proposed method fairly with the other methods, the ge-
netic algorithm was first used to search the proper number
of states for each MCM in MCM�GA�, and then the
k-means algorithm designed the same number of states for
each MCM in MCM�KM�. Table 2 shows the number of
states for each MCM in MCM�GA�, and shows that the
number of states for each word MCM is variable, because
the genetic algorithm can automatically find the proper
number of states in each MCM. Additionally,
MCM�KM&fixed� indicates that the number of states in
each MCM is fixed. Since the average number of states for
each MCM in Table 2 approximates to 22, the number of
states of each MCM was set to 22 in MCM�KM&fixed�.
Table 1 shows that MCM�KM� outperformed
MCM�KM&fixed�, because the MCMs do not all have to
be set to the same number of states when the MCMs are
designed. Additionally, as shown in Table 1, MCM�GA�

Table 5 The texture recognition ra

Textures Re

MCM�KM� MCM�GA� MCM

D1 91 100

D3 100 100

D6 100 100

D10 75 83.3

D11 100 100

D12 100 100

D14 75 83.3

D15 91.7 100

D16 100 100

D19 58.3 66.7

D20 83.3 91.7

D26 100 100

D37 91.7 100

D49 91.7 91.7

D52 83.3 100

D56 66.7 83.3

D66 91.7 91.7

D87 100 100

D94 83.3 100

D101 91.7 100

Average
recognition
rate

88.72 94.59
Journal of Electronic Imaging 033004-
outperformed MCM�KM�, because the MCMs designed by
the genetic algorithm were better than those designed by
the k-means algorithm. The genetic algorithm usually finds
the near-optimal solutions, while the k-means algorithm ob-
tains the local solutions. Furthermore, MCM�FGA� outper-
formed MCM�GA�, because the fuzzy genetic algorithm
generates a better clustering result than the non-fuzzy ge-
netic algorithm. FMCM�GA� outperformed MCM�GA�, in-
dicating that the fuzzy MCM had a higher recognition per-
formance than the non-fuzzy MCM. Finally, Table 1 shows
that FMCM�FGA�, the combination of the fuzzy genetic
algorithm and the fuzzy MCM, is the best method among
those studied.

Table 3 compares the analytical results of the proposed
method with those of the HMM methods, which are seven-
state left-to-right models. The proposed methods are com-
pared with discrete HMM �DHMM� and continuous HMM
�CHMM� in this experiment. The VQ level M is set to 128
in HMMs. The segmental k-means algorithm was run to
estimate the parameters when using HMM, and the Viterbi
algorithm was used in recognition. Table 3 shows that FM-
CM�FGA� outperformed DHMM and CHMM, and the
computation time required by using FMCM�FGA� was less
than that required by DHMM and CHMM.

the proposed MCMs and Ref. 12.

tion Rates �%�

� FMCM�GA� FMCM�FGA� Ref. 12

100 100 95.34

100 100 90.47

100 100 93.47

.7 91.7 91.7 91.11

100 100 82.35

100 100 100

.3 91.7 91.7 84.09

100 100 95.23

100 100 43.90

75 75 59.90

.7 91.7 100 91.30

100 100 100

100 100 92.85

100 100 90.69

100 100 95.23

.3 83.3 83.3 76.19

.7 91.7 100 93.18

100 100 100

100 100 88.63

100 100 97.72

.83 96.26 97.09 87.91
tes of

cogni

�FGA

100

100

100

91

100

100

83

100

100

75

91

100

100

100

100

83

91

100

100

100

95
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Table 6 The texture recognition rates of the proposed MCMs and Ref. 13.

Textures Recognition Rates �%�

MCM�KM� MCM�GA� MCM�FGA� FMCM�GA� FMCM�FGA� Ref. 13

D1 75 83.3 100 100 100 98.89

D3 100 100 100 100 100 97.78

D6 100 100 100 100 100 100

D11 100 100 100 100 100 99.44

D16 100 100 100 100 100 100

D17 100 100 100 100 100 99.89

D20 100 100 100 100 100 100

D21 100 100 100 100 100 99.72

D24 83.3 100 100 100 100 98.33

D28 75 91.7 91.7 91.7 91.7 89.71

D29 100 100 100 100 100 89.44

D32 75 91.7 100 100 100 98.89

D34 100 100 100 100 100 99.72

D35 75 91.7 100 100 100 94.72

D46 75 91.7 91.7 100 100 95.00

D47 91.7 100 100 100 100 94.44

D49 100 100 100 100 100 100

D51 91.7 100 100 100 100 97.50

D52 83.3 100 100 100 100 100

D53 100 100 100 100 100 100

D55 83.3 91.7 91.7 91.7 91.7 98.89

D56 66.7 75 75 75 83.3 75.19

D57 100 100 100 100 100 88.61

D65 100 100 100 100 100 91.39

D78 100 100 100 100 100 99.72

D82 100 100 100 100 100 90.28

D84 100 100 100 100 100 97.50

D85 91.7 100 100 100 100 98.17

D101 91.7 100 100 100 100 100

D104 75 100 100 100 100 97.50

Average
recognition
rate

91.11 97.22 98.34 98.61 98.89 96.34
Journal of Electronic Imaging Jul–Sep 2006/Vol. 15(3)033004-9
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5.2 Texture Recognition
The texture images obtained from Ref. 9 were used to test
the proposed method in the experiments. Each texture had a
size of 512�512 �pixels� and with 256 gray levels was
divided into four subtextures of size 256�256 �pixels�.
Then, one of the four subtextures was randomly chosen as
the training texture, and the other three subtextures were
regarded as the testing textures. Before designing the

Fig. 4 Performance of the genetic algorithm using different Pc and
Pm: �a� the best fitness of the string in the genetic algorithm when
MCM�GA� is designed by the speech data set, �b� the number of
generations required to obtain the best string in the genetic algo-
rithm when MCM�GA� is designed by the speech data set, �c� the
best fitness of the string in the genetic algorithm when MCM�GA� is
designed by the texture data set, and �d� the number of generations
required to obtain the best string in the genetic algorithm when MC-
M�GA� is designed by the texture data set.
MCM, the training textures were divided into blocks with

Journal of Electronic Imaging 033004-1
the size of 16�16 �pixels�. Each block was then trans-
formed by a Haar wavelet transform10 to obtain four sub-
bands of a block. The mean values �MVs� and standard
deviations �SDs� of four subbands were calculated as fol-
lows.

MV =
1

N2 	
N

v�i, j� , �19�

Fig. 5 Performance of the fuzzy genetic algorithm using different Pc
and Pm: �a� the best fitness of the string in the fuzzy genetic algo-
rithm when FMCM�FGA� is designed by the speech data set, �b� the
number of generations required to obtain the best string in the fuzzy
genetic algorithm when FMCM�FGA� is designed by the speech
data set �c� the best fitness of the string in the fuzzy genetic algo-
rithm when FMCM�FGA� is designed by the texture data set, and �d�
the number of generations required to obtain the best string in the
fuzzy genetic algorithm when FMCM�FGA� is designed by the tex-
ture data set.
i,j=1

Jul–Sep 2006/Vol. 15(3)0
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SD = � 1

N2 	
i,j=1

N

�v�i, j� − mv�2�1/2

, �20�

where N denotes the size of the subband, set to 8 in this
paper, and v�i , j� indicates the wavelet coefficient on the
location �i , j� in the subband. Therefore, each block con-
taining four subbands can be represented by a feature vec-
tor with eight values since two values, SD and MV for each
subband.

Table 4 shows the recognition comparison between the
proposed methods and Ref. 11. To compare the proposed
methods fairly with the method proposed in Ref. 11, thirty
texture images used in Ref. 11, which are shown in Fig. 3,
were used to test our method. In Table 4, the MCM�KM�
designed the same number of states for each MCM as MC-
M�GA�. From Table 4, MCM�FGA�, FMCM�GA�, and
FMCM�FGA� had higher average recognition rates than the
recognition result proposed in Ref. 11. The symbol “—”
indicates “no information” in Ref. 11. Tables 5 and 6 show
that the proposed methods also outperformed the methods
proposed in Refs. 12 and 13. Notably, the textures used in
Tables 5 and 6 are the same as that used in Refs. 12 and 13,
respectively. The reason is that the genetic algorithm pro-
posed herein can find the proper number of states for each
MCM, and hence design MCMs that achieve the near-
optimal models. Additionally, the fitness function in the ge-
netic algorithm is designed to minimize the differences be-
tween textures in the same MCM, and maximize the
differences between the textures in different MCMs.

5.3 Analysis of the Genetic Algorithms
The proposed genetic algorithm requires the population
size, crossover, and mutation rates, as input parameters
when being used to design the MCMs. Setting these param-
eters to suitable values can enhance the performance of the
genetic algorithm when the MCMs are designed. The popu-
lation size is generally not sensitive to the genetic algo-
rithm. However, if the population size is too large, then
extra computation time is required to process these bit
strings in the genetic algorithm. If the population size is too
small, then the genetic algorithm must spend more time to
search for the solution, because the insufficient information
is available to find the solution when a small population is
used in the genetic algorithm. In the above experiments, the
population size was set to 200, which is enough to search
for the near-optimal solution in the genetic algorithm.

The performance of the genetic algorithm is sensitive to
two parameters, namely the crossover and mutation rates.
Figure 4 shows the performance of the genetic algorithm
when the MCM�GA� is designed by the speech and texture
data sets. According to Figs. 4�a� and 4�c�, the best fitness
of string obtained is highest when 70% � Pc�90% and
3% � Pm�7% are given to the genetic algorithm. Notably,
the best fitness with higher value is better on the plot. The
genetic algorithm does not easily find the solution when
Pm�10%, because the bit strings with high variations do
not readily converge to the near-optimal solution. Figures
4�b� and 4�d� depict the minimal number of generations
required to search for the best string in the genetic algo-
rithm. Notably, the lower number of generations is better

on the plot. In Figs. 4�b� and 4�d�, if Pc is too small, then
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the genetic algorithm spends a long time searching for the
solution, because the bits in a string have a small probabil-
ity of being interchanged with bits in other strings. There-
fore, the genetic algorithm requires more generations to
find the solution. However, if Pc approaches 100%, then all
of the strings should be interchanged with bits in the cross-
over phase of the genetic algorithm, making the solutions
of the genetic algorithm process unstable. Figure 5 shows
the performance of the FMCM�FGA� design by the fuzzy
genetic algorithm with varying values of Pc and Pm. Fig-
ures 4 and 5 demonstrate that 70% � Pc�90% and 3%
� Pm�7% achieve good performance in the genetic algo-
rithms. In our experiments, Pc=80% and Pm=5%.

6 Conclusions
We proposed a genetic algorithm to design the MCMs. The
genetic algorithm can automatically determine the number
of states for each MCM, which can then achieve a near-
optimal model. The experimental results show that the pro-
posed MCMs based on the genetic algorithm outperformed
the traditional MCMs based on the k-means algorithm. Fur-
thermore, smoothing parameters were used in the genetic
algorithm and the MCM to further enhance the perfor-
mance of the MCM. Thus, this paper also proposes the
FMCM and FGA. The experimental show that the combi-
nation of FMCM and FGA can enhance the recognition
rates for texture and speech.
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