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Variable-Branch Tree-Structured Vector Quantization
Shiueng-Bien Yang

Abstract—Tree-structured vector quantizers (TSVQ) and their
variants have recently been proposed. All trees used are fixed
M-ary tree structured, such that the training samples in each
node must be artificially divided into a fixed number of clusters.
This paper proposes a variable-branch tree-structured vector
quantizer (VBTSVQ) based on a genetic algorithm, which searches
for the number of child nodes of each splitting node for optimal
coding in VBTSVQ. Moreover, one disadvantage of TSVQ is that
the searched codeword usually differs from the full searched
codeword. Briefly, the searched codeword in TSVQ sometimes is
not the closest codeword to the input vector. This paper proposes
the multiclassification encoding method to select many classified
components to represent each cluster, and the codeword encoded in
the VBTSVQ is usually the same as that of the full search. VBTSVQ
outperforms other TSVQs in the experiments presented here.

Index Terms—Genetic clustering algorithm, multiclassification
encoding method, tree-structured vector quantizer (TSVQ).

I. INTRODUCTION

T REE-STRUCTURED vector quantizer (TSVQ) [1]–[7] is
the form of vector quantization (VQ) where the codebook

is grown on a binary (or M-ary) tree, thus requiring the search
rather than , for a codebook of size . In [1], the

TSVQ was designed one layer at a time using the generalized
Lloyd algorithm. Each new layer of the tree was obtained by
splitting each leaf node of the previous layer into two nodes,
and, thus, the tree grows into a balanced tree that implements a
fixed-rate code. In [2], an alternative TSVQ design algorithm was
introduced. In this algorithm, the tree is grown one node at a time
rather than one layer at a time, and the node that contributes most
to reducing the overall distortion is selected for splitting. The tree
is grown into an unbalanced tree with a predetermined number
of leaves, which is a power of two. Chou et al. [3] proposed
a method for designing an unbalanced tree coder. A balanced
fixed-rate TSVQ first is grown to a predetermined height and
is then optimally pruned back using the generalized Breiman,
Friedman, Olshen, and Stone (BFOS) algorithm [4]. This al-
gorithm works by always pruning the subtree with the smallest
value of , where is defined as the ratio of the increase in dis-
tortion to the decrease in rate. Riskin et al. [5] proposed a greedy
method for node splitting and tree growing. Moreover, Balakr-
ishnan et al. [6] proposed a recursive splitting process to grow
the tree, which outperforms [5]. Recently, the variable-length
constrained-storage tree-structured vector quantization was
proposed in [7]. The method proposed in [7] utilizes codebook
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Fig. 1. Set of training samples which is not proper to be divided into two
clusters.

sharing by multiple vector sources to greedily grow an unbal-
anced tree-structured residual vector quantizer with constrained
storage. The performance of [7] is similar to [5] and [6].

However, all of the tree-structured coders mentioned above
are fixed M-ary trees, meaning that when a node is split, the
training samples contained in the node have to be divided into a
fixed number of clusters. The well-known clustering method, the
Linde-Buzo-Gray (LBG) algorithm [8], has been widely used
for designing the TSVQs. That is, each node is split into a fixed
number of child nodes when TSVQ is designed using the LBG
algorithm.However, cases usually occur where it is inappropriate
to divide the set of training samples into a fixed number of clus-
ters, as illustrated in Fig. 1. The data set in Fig. 1 is not suitable
for division into two clusters. That is, if a node contains the data
set as in Fig. 1, that node is not suitable for division into two
child nodes when the binary TSVQ is designed by using the LBG
algorithm. However, the user usually has no idea regarding the
number of clusters contained in the splitting node. Thus, the user
usually divides each node into two (or M) child nodes, and then
the binary (or M-ary) TSVQ is constructed. Actually, each node
need not be divided into the same number of child nodes when
TSVQ is designed. However, the LBG algorithm cannot help the
user to search for the proper number of branches in TSVQ. Fur-
thermore, [9] showed that the LBG algorithm fails to converge
to a local minimum under certain conditions. Since the genetic
algorithm is good at searching ([10], [11]), this paper proposes a
genetic algorithm for searching a proper number of child nodes
when a node is split, and then variable-branch tree-structured
vector quantizer (VBTSVQ) achieves optimal coding. That is,
when a node is split owing to growing the VBTSVQ, the genetic
algorithm can determine the number of child nodes of this node
required to maximize the value of .

One disadvantage of the tree-structured codebook is that the
sought codeword usually differs from the codeword used in a
full search. That is, the codeword sought in TSVQs is not al-
ways the one closest to the input vector. This error occurs when a
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Fig. 2. Example to illustrate the classification error in the danger region.

large cluster represents a node. A single center cannot represent
all objects in the large cluster. Fig. 2 shows an example illus-
trating the drawback of TSVQs. In Fig. 2(a), the data set is first
divided into two clusters, and , and cluster is then fur-
ther divided into three clusters, , and . Fig. 2(b) shows
the corresponding tree-structured codebook. If the unknown ob-
ject is encoded by the tree-structured codebook, then object

is classified into the cluster , since is closer to the center
of cluster than the center of cluster . A classification error
occurs when is really the cluster closest to . This kind of
classification error usually occurs when the unknown object O
is in the region between the two clusters. The region between the
two clusters is defined as the danger region. In Fig. 2(c), the gray
region indicates the danger region between the two clusters,
and . A large cluster requires many feature points to prevent
a classification error in the danger region. For example, let each
cluster contain two feature points, and let two feature points
and be close to the danger region, as shown in Fig. 2(d).
The unknown object is observed to be closest to point in

and, thus, is correctly classified to cluster . Therefore,
multiple centers in a large cluster are required to avoid the clas-
sification error in the danger region. In [12], a search method
involving a binary tree coder was proposed to improve coding
quality. When the binary tree coder is traced to find a codeword

besides the traced node, the node nearest to the traced node is
also traced. Therefore, the search area is enlarged and a better
codeword can be found. However, in [12], the cluster that rep-
resents the node in the binary tree coder is still the united-center
cluster. In [13], the subtractive clustering algorithm was pro-
posed to generate multicenter clusters. In a multicenter cluster,
many centers are generated according to the density of each ob-
ject in the cluster. In [14], the hierarchical subtractive clustering
algorithm was proposed. This algorithm partitions the collection
of objects into several subcollections and calculates the density
functions for the objects in each subcollection. Also, this clus-
tering algorithm with multicenter clusters can handle nonspher-
ical clusters, as described in [14]. In these multicenter clustering
algorithms, the search for the centers is based on the density of
each object in the cluster, such that objects with high density are
preferentially selected as the initial centers in the cluster. How-
ever, if object distribution in the cluster is not balanced, then the
center distribution in the cluster may be skewed. In this case,
centers in a cluster representing a node in TSVQ are not suitable
for classifying unknown objects. In VBTSVQ, the multiclassi-
fication encoding method is proposed to search for the closest
codeword to an unknown object. In VBTSVQ, many classified
components can be automatically selected to represent a single
cluster. Users are not concerned with the number of classified
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components in each cluster. Also, the minimal number of the
classified components in each cluster can be automatically de-
termined. When an unknown object is encoded in VBTSVQ, it
is not compared with the center of a cluster, but rather with clas-
sified components in each cluster. Furthermore, these classified
components in each cluster are close to the danger regions, and
the classification error can be reduced in the danger region. In
the experiment performed in this paper, the codeword encoded
in VBTSVQ usually is the same as that sought in a full search.

The remainder of this paper is organized as follows. Section
II presents the design of the VBTSVQ. Section III then de-
scribes the design of the multiclassification encoding method in
VBTSVQ. Subsequently, experiments are given in Section IV,
and, finally,Section V presents conclusions.

II. DESIGN OF THE VBTSVQ

VBTSVQ consists of two parts, the variable-branch tree en-
coder and the Huffman tree decoder. Subsection II-A describes
the design of the variable-branch tree encoder and the Huffman
tree decoder with the rate constraint, while Subsection II-B
presents the design of the genetic algorithm, which is used to
design the variable-branch tree codebook.

A. Designs of the Variable-Branch Tree Encoder and the
Huffman Tree Decoder With the Rate Constraint

The design of the growing method for the variable-branch
tree encoder is given before describing the design of the vari-
able-branch tree encoder and the Huffman tree decoder with the
rate constraint. The growing method is a “top-down” approach,
where we start from the root node and build a tree until the de-
sired rate coder is obtained. In the variable-branch tree code-
book, the number of child nodes for each internal node is dif-
ferent, and the code of each leaf node is relied on the Huffman
coding [15]. In our growing approach, splitting one node at a
time grows the variable-branch tree encoder . Let denote
the set of all leave nodes in the variable-branch tree , including
node . Let represent the probability on the training sam-
ples in node , and let denote the bits required to repre-
sent node . They are defined as

the number of training samples contained in the node
all of the training samples

(1)

the number of bits represented by the node (2)

Finally, let and indicate the average distortion and
rate, respectively, measured by . The tree then indicates the
tree after node is split into nodes, , by the
GA1 algorithm, which is described in Subsection II-B. Then

(3)

(4)

(5)

(6)

Under the conditions of quasiconvexity, the slope of the distor-
tion-rate function for rates between that of and is

(7)

Thus, when splitting a node of the tree to get coder of higher rate,
the aim is to maximize . The design of the growing method is
to select the node with the largest to be split at a time in .

In VBTSVQ, the user can control the width and depth of the
variable-branch tree codebook. If in (7) is as large as pos-
sible, one node at a time is split into many child nodes in the
variable-branch tree codebook. That is, the codebook forms a
wide tree. Also, if is as small as possible, then one node at
a time is split into few child nodes, and the codebook tends to
grow into a deep tree. Therefore, in (7) can be rewritten as

(8)

where is a weighting factor. Notably, is positive in (8). If is
set larger than 1, then a deep tree can be obtained. If is within
(0, 1), a wide tree is thus produced.

Designs of the variable-branch tree encoder and the
Huffman tree decoder with the rate constraint are described
as follows. Before designing the VBTSVQ, the user must give
a rate threshold and a weight for the variable-branch tree
encoder . is grown one node at a time by the GA1 algo-
rithm, and the growing process continues until the average rate
of reaches the rate threshold. The algorithm for designing the
variable-branch tree encoder and the Huffman-tree decoder

with the rate constraint is described as follows.

Algorithm: VBTSVQ Rate Constraint

Input: The rate threshold , the weight , and the set of objects, .

Output: A variable-branch tree encoder with an average rate of less than or equal to

and the

Huffman tree decoder .

Step 1. Set node as the root node of tree , and node to contain all objects in . Set

.

Step 2. While The value of Rate is smaller than .

Step 2.1. For each leaf node in , perform the following.

Apply the GA1 algorithm to all objects in node to search for the child nodes

of such that is as large as possible.

Step 2.2. Let be the leaf node with the largest . Split node in to generate

the new encoder . Use all the leaf nodes in to construct the

corresponding Huffman tree decoder . Traverse each leaf node of to

find the corresponding code of each leaf node in .

Step 2.3. , where is defined as (6). Set and

.

Step 3. Output the variable-branch tree encoder and the corresponding Huffman tree

decoder .

Stop.
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B. GA1 Algorithm

In the design of the variable-branch tree encoder, one leaf
node at a time is split using the genetic clustering algorithm
GA1 to achieve the optimal coding in the VBTSVQ. Let be
one of the leaf nodes in and let be the encoder after is
split. The goal of GA1 is not only to search automatically for the
number of child nodes of , but also for the value of defined
in (8) to be large as possible when node is split.

Let denote the set of objects contained in node and the size
of be . Suppose that is a large data set. To achieve the per-
formance of GA1 for processing the large data set, the pair-wise
nearest-neighbor (PNN) algorithm [16] is first applied to the set

. In PNN, the two closed objects (or clusters) can be merged at a
time to form a new cluster, and this merge processing is continued
until the desired number of clusters is obtained. Let clusters,

, be obtained after the PNN is applied to , and
let indicate the center of cluster , for . Each
cluster is regarded to be a component and will not be divided
during the GA1 algorithm. That is, only components
must be further clustered in GA1. Using the PNN algorithm is
an attempt to reduce the computation time in GA1. Therefore,
GA1 can efficiently process the large data set.

The GA1 algorithm consists of an initialization step and iter-
ations with three phases in each generation. They are described
as follows.

1) Initialization Step: In the initialization step of GA1, a
population of strings is randomly generated. The length of
each string is , which is the number of the components obtained
in the PNN algorithm. strings are generated such that the 1 s
in the strings are uniformly distributes within . Each string
represents a subset . If is in this subset,
then the th position of the string will be 1; otherwise, it will be 0.
Each in the subset is a seed to generate a cluster.

The method for generating a clustering from the seeds
is described before the three phases are elucidated. Let

be a bit string in the population. Each
bit indicates the corresponding component . Then, the
string includes two sets of components, and , which
are defined as

(9)

(10)

where . In components, for ,
are used as the seeds to generate clusters. Initially, each
cluster contains only one component, , and then the center

of cluster is set to . Then, the components in are con-
sidered one at a time and the Euclidean distances between each
component and the centers , for , are calculated.
Then

(11)

If is classified into the cluster to form the new cluster
, then the new center and the size of cluster are updated

as

(12)

where and indicates the number of objects contained
in the cluster and the component , respectively. After the
components in have all been considered, clusters, for

, are obtained from the string . Notably, the cluster
is represented as the th child node of .

2) Reproduction Phase: The main issue of the reproduction
phase is the design of the fitness function for the string . We
emphasize that the value of for a split node must be as large
as possible during the growth variable-branch tree codebook
in the VBTSVQ. Let the string generate clusters, for

. That is, child nodes of are generated when
node is split. Let be the encoder after node is split in

. Then, all leaf nodes in are used to construct the corre-
sponding Huffman tree decoder based on the number of ob-
jects contained in each leaf node. Travel to each leaf node in
to find the corresponding Huffman code for each leaf node in

. Calculate when node in is split to generate . If
is large, then the fitness of string tends to be large; other-

wise, the fitness of string is small. Thus, the fitness function
of string is defined as

Fitness (13)

After the fitness of each string in the population is calculated,
the reproduction operator is implemented using a roulette wheel
with slots sized according to fitness.

3) Crossover Phase: If the crossover operator is applied to a
selected pair of strings and , then two random numbers and

in are generated to decide which pieces of the strings are
to be interchanged. After the crossover phase, two new strings

and replace the strings, and in the population. The
significance of the crossover phase is that it exchanges seeds
between the different strings, to yield the various clusterings.

4) Mutation Phase: During the mutation phase, the bits of
the strings in the population are chosen from with proba-
bility . Each chosen bit is then changed from 0 to 1 or from
1 to 0. That is, if one bit is chosen, then a selected cluster is
discarded or produced in a string. After the mutation phase, the
new string can be obtained and replace the original string .

The user may specify the number of generations over which
he or she wants the genetic algorithm to run. The genetic algo-
rithm runs for this number of generations and retains the string
with the best fitness.

The time complexity of GA1 is analyzed as follows. The
GA1 algorithm consists of an initialization step and iterations
with three phases in each generation. Let the size of data set
be . Before GA1 is applied to the data set, the PNN algorithm
takes time to calculate the distances between pairs of ob-
jects and takes time to find the minimum. In GA1, let
denote the size of population and denote the total number
of components. It takes time for each component to
find the nearest cluster. The time complexity of the GA1 algo-
rithm is dominated by the calculation of the fitness function. It
takes time in the worst case. Suppose the GA1 algo-
rithm is asked to run generations, the time complexity will
be . Hence, the time complexity of the whole GA1
algorithm is .
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III. DESIGN OF THE MULTICLASSIFICATION

ENCODING METHOD IN VBTSVQ

Subsection III-A proposes the genetic algorithm GA2 to find
the classified components in each cluster. Subsection III-B then
describes the multiclassification encoding method.

A. GA2 Algorithm

Before the GA2 algorithm is designed, the classified com-
ponents in a cluster are first defined as follows. Let be the
variable-branch tree codebook, which is constructed by the
VBTSVQ Rate Constraint algorithm. Each cluster that rep-
resents one node, except the root node in , contains many
classified components. Let be an internal node, and let node
contain child nodes in ; these child nodes are represented
by clusters, , respectively. The following
describes how to define the classified components in these child
nodes of . Let cluster contain classified components,

, for . Then, the distance between
object and cluster , is defined as

(14)

where denotes the center of the classified component .
Then, the classified components in the cluster satisfy

(15)

for each . Thus, when an unknown object reaches node
by tracing the variable-branch tree codebook , the unknown

object should be compared with the classified components in
these child nodes to determine which one of these child
nodes should be traced in the next step.

Three design issues raised by the GA2 algorithm are de-
scribed as follows. First, the GA2 algorithm searches for the
classified components in each cluster, all of the objects in
which satisfy (15). Second, the GA2 algorithm required that
the density of each classified component is as large as possible
and that the classified components in each cluster are close to
the danger regions, improving the classification errors in the
danger regions. Third, GA2 searches for the minimal number
of classified components required in each cluster, reducing the
encoding time.

Like GA1, before the GA2 algorithm is used to find the
classified components of the clusters, the PNN algorithm is
applied to all the objects to obtain a set of components in
each cluster. The GA2 algorithm is described as follows. The
GA2 algorithm has two stages. In the first stage of GA2,
many nearest-neighbor components are selected from each
cluster. These nearest-neighbor components in a cluster are the
components that are closest to the other clusters. In general,
these nearest-neighbor components in the cluster are also the
components closest to the danger regions. The second design
issue associated with GA2 concerns the fact that the classified
components in each cluster should be close to the danger
regions. Thus, the second stage of GA2 not only searches
for the classified components of each cluster, but also that
these classified components are close to the nearest-neighbor
components in the cluster.

The first stage of the GA2 algorithm is as follows.

Input: clusters, .

Output: Sets of nearest-neighbor components of cluster , for .

Step 1. For each cluster , for , do the following.

Step 1.1. Set to empty.

Step 1.2. For each object in the cluster , do the following.

Calculate the Euclidean distances between the object and each component

in cluster . Let , and satisfy

. If

is not in the set , then is regarded as a nearest-neighbor

component in cluster , and is added to the set .

Step 2. Output the sets, for . End.

Fig. 3 shows an example to illustrate nearest-neighbor com-
ponents. In Fig. 3, the large black points represent the large com-
ponents. Let the objects in node be clustered into four clus-
ters, , and , by the GA1 algorithm, as shown in
Fig. 3(a). In Fig. 3(b), each component in a solid-line circle rep-
resents the nearest-neighbor component.

The second stage of GA2 is a genetic algorithm, which is
applied to these clusters to find the classified components.
The method by which the second stage of GA2 searches for
the classified components of cluster using the set is
described below. The initialization step and three phases in the
genetic algorithm are described as follows.

1) Initialization Step: In the initialization step, a population
of binary strings is randomly generated. The length of the
binary string is the total number of components in cluster .

binary strings are generated in such a way that the numbers of
1s in the strings uniformly distributes within . Each string
represents a subset of . If is in this subset, the th bit in the
string will be 1; otherwise, it will be 0. Each component, , in
the subset indicates a classified component in .

2) Reproduction Phase: Let be a bi-
nary string in the population. Each bit represents the cor-
responding component . If bit , the corresponding
component is checked to determine whether it is a classified
component in the string . Let the set consist of these com-
ponents such that

(16)

If these components in are all classified components of cluster
, then each object must satisfy

(17)

Notably, (17) also satisfies the definition of classified compo-
nents in (15), since if , we have

(18)

Therefore, if each satisfies (17), is regarded as the set
of all classified components of cluster . The fitness function
calculates the number of objects that satisfy (17) in cluster .
If object satisfies (17), then is set to 1; otherwise,

is set to 0. Let

(19)
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Fig. 3. Example to illustrate the classified components in four clusters.

The first design issue concerning the fitness function emphasizes
that all the classified components can represent all the objects
in the cluster. Thus, must be as large as possible. If ,
the components in can represent all objects in cluster .

The second design issue of the fitness function emphasizes
that the density of each classified component should be as large
as possible because a classified component with a high density
can represent many objects in a cluster. Furthermore, the classi-
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fied components are required to be close to the nearest-neighbor
components in a cluster to reduce the error of classification in
the danger regions. Thus, is defined as

(20)

where is the center of the nearest-neighbor component
is the density of the component and is

defined as

number of objects contained in

(21)

Notably, if the component in is the same as the nearest-
neighbor component , then is set to a small pos-
itive value in (20).

The third design issue concerning the fitness function empha-
sizes that the number of classified components in must be as
small as possible to reduce the encoding time in VBTSVQ. To
summarize the three aforementioned design issues, the fitness
function for string is defined as

Fitness (22)

In (22), if , the components in cannot represent all
objects in cluster , and the Fitness is then set to a small
value within ; otherwise, Fitness exceeds 1. After the
fitness of all binary strings in the population is calculated, the
reproduction operator is implemented as using a roulette wheel
with slots sized according to fitness.

3) Crossover and Mutation Phases: The crossover and mu-
tation phases in the genetic algorithm are similar to that in GA1.
Two random numbers in are generated to decide which
pieces of two strings are to be interchanged in the crossover
phase. Also, the crossover operator is done with probability .
Furthermore, in the mutation phase, the bits of each string
in the population are chosen from with probability .
Each chosen bit is then changed from 0 to 1 or from 1 to 0.

After the GA2 algorithm is applied to cluster , the string
with the best fitness is reserved. Let the set contain com-

ponents, each of which has a corresponding bit that equals to 1
in . Then, each component in is set as the classified
component in cluster . Fig. 3(c) shows an example to il-
lustrate the classified components. In Fig. 3(c), the components
in the dotted circle are classified components.

In the following, the time-complexity of GA2 is analyzed
when the GA2 algorithm is used to find the classified compo-
nents of cluster . Let there be clusters, and the number of
all objects contained in these clusters be Let the number of
objects contained in be . The time complexity of the first
stage in GA2 is dominated by Step 1, which takes time
to calculate the Euclidean distances between pairs of objects to
determine the nearest-neighbor components of cluster . In the
second stage, let denote the size of population. The time com-
plexity of the second stage is dominated by the calculation of the
fitness function. It takes time to calculate the value of .
Thus, the reproduction phase takes time in the worst

Fig. 4. Relation between the values of r and the average number of branches
in the variable-branch tree codebook.

case. Suppose the genetic algorithm is asked to run genera-
tions, the time complexity will be . Hence, the time
complexity of the whole clustering algorithm is .

B. Multiclassification Encoding Method

If an unknown object is encoded in VBTSVQ, then is
traced from the root node to the leaf nodes in the variable-branch
tree codebook, it is then encoded using the codeword in the
closest leaf node. Let be an internal node that consists of

child nodes in the variable-branch tree codebook. The set of
objects in the th child node of is represented as the cluster

, for . The following describes how to classify
the unknown object into one of these child nodes, when
the object reaches the internal node by tracing the vari-
able-branch tree codebook. The traditional encoding method,
the united-center encoding method, uses the Euclidean distance
between the object and the center to measure the closeness
of object to cluster . In the proposed encoding method, the
distances between and the classified components in cluster

are used to measure the closeness of to the cluster . Let
cluster contain classified components, ,
for , and let

(23)

where is defined in (14). Then, the unknown ob-
ject is classified into the cluster . Therefore, the object

proceeds to the th child node of node to continue to
trace the variable-branch tree codebook. This tracing process
is continued until reaches one of the leaf nodes in the vari-
able-branch tree codebook; then, the codeword contained in the
leaf node is regarded as the encoding result of object .

The time complexity of the multiclassification encoding
method is described as follows. Suppose that the total number
of leaf nodes in the variable-branch tree codebook is ; the
average number of child nodes of each internal node in the
variable-branch tree codebook is , and the average number of
classified components in each node is . Then, the time com-
plexity is approximately to for the proposed
encoding method of VBTSVQ.
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TABLE I
CODING QUALITIES OF VBTSVQ WHEN THE VARIOUS VALUES OF r ARE USED IN � . (a) SPEECH DATA. (b) IMAGE DATA

IV. EXPERIMENTS

This section compares the performance of VBTSVQ with that
of the other TSVQs. Furthermore, the multiclassification en-
coding method and other encoding method are compared below.

A. Data Sets

In the experiments, two data sets, namely speech and image
data sets, were used to test the performance of VBTSVQ and
the other methods, respectively. In the image data set, five
512 512 (pixels) images with 256 gray levels were employed
as the training images, and were divided into 4 4 blocks
to design the VBTSVQ and the other TSVQs. The “Lena”
image was not used in training to test the performance of these
methods. In the speech data set, a total of 100 000 spectral fea-
ture vectors of speech were used as training objects to design
the VBTSVQ and the other methods. These spectral feature
vectors were taken from 1000 continuous speeches, given by
five males and five females. Each spectral feature vector con-
tained 64 sample points. Furthermore, 50 000 spectral feature
vectors were extracted as testing objects not used in training.

B. Performance of VBTSVQ

VBTSVQ uses the GA1 algorithm to construct the vari-
able-branch tree codebook. The parameters used in GA1 were
population size 100, crossover rate 80%, and mutation rate 5%.
Five hundred generations were run and the best solution was
retained. Before GA1 was applied to the training data set, the
PNN algorithm was applied to all training objects to obtain a
small set of components. In the experiments, the size of the
component set was set to a fifth of the total number of training
objects. In GA1, the weight is used to control the width of the
variable-branch tree codebook. Fig. 4 shows the average number
of branches of an internal node in the variable-branch tree code-
book when various values of are used in (8). If is large, then
a narrow variable-branch tree codebook is obtained; otherwise,
a wide variable-branch tree codebook is obtained. Table I lists
the coding qualities of VBTSVQ for various in . In Table I,
the coding quality of VBTSVQ is enhanced with because the

TABLE II
ENCODING TIME OF VBTSVQ WHEN THE

VARIOUS VALUES OF r ARE USED IN �

Fig. 5. Comparison of the performance of the VBTSVQ and the other TSVQs.
(a) Speech data. (b) Image data.

variable-branch tree codebook tends to grow into a wide tree
with decreasing , and, thus, the unknown object is compared
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Fig. 6. Performance comparison between the multiclassification encoding method and the other encoding methods for speech data. (a) The performance of the
various encoding methods in VBTSVQ. (b) The performance of the various encoding methods in VLTSVQ. (c) The performance of the various encoding methods
in PTSVQ. (d) The performance of the various encoding methods in BTSVQ.

with more nodes at a time to determine which node should be
traced in the wide variable-branch tree codebook. Clearly, if
the variable-branch tree codebook is too wide, then the coding
quality of VBTSVQ approaches that obtained by the full search
method. Table II lists the encoding times when various values of

are used to design the variable-branch tree codebook. Although
the coding quality of VBTSVQ obtained using the wide vari-
able-branch tree codebook is higher than that using the narrow
variable-branch tree codebook, the encoding time required by the
wide variable-branch tree codebook exceeds that required by the
narrow variable-branch tree codebook. If the user wishes to min-
imize the encoding time, a narrow variable-branch tree codebook
is preferred; otherwise, a wide variable-branch tree codebook is
used to enhance the coding quality. Fig. 5 compares the VBTSVQ
with the other three methods, Balakrishnan’s method [8], Chou’s
method [6], and the balanced binary-tree VQ, which were im-
plemented for comparison with the proposed method. These
three methods were called VLTSVQ, PTSVQ, and BTSVQ,
respectively. In PTSVQ, the tree was grown to a height of 12
layers before pruning. Also, the three TSVQs were easily de-
signed using M-ary trees, namely VLTSVQ(M), PTSVQ(M),
and BTSVQ(M), where M denotes the average number of
child nodes in the variable-branch tree codebook designed by
VBTSVQ. In Fig. 5, was set to 1.5 to design a variable-branch
tree codebook, and the average number of child nodes of an

internal node in the variable-branch tree codebook was approxi-
mately six for speech training data set and five for image training
data set. Thus, M was set to 6 and 5 in these three TSVQ(M)s
for testing speech and image data sets, respectively. Also, the
Huffman coding was used in the TSVQ(M)s, as VBTSVQ. Fig.
5 fairly compares these methods: the GA1 algorithm first was
used to design the variable-branch tree codebook, and then the
other TSVQs were applied separately to obtain equal sized code-
books using the LBG algorithm. VBTSVQ(LBG) uses the LGB
algorithm to design the variable-branch tree codebook, with the
same structure obtained using VBTSVQ . Addition-
ally, VBTSVQ and the other methods use the same traditional
united-center encoding method to encode an unknown object. In
the united-center encoding method, the unknown object needed
only to be compared with the center in each internal node, such
that the unknown object can decide which child node should be
forwarded. In Fig. 5, the VBTSVQ has higher coding
quality than the other methods for a given bit rate, because the
GA1 algorithm can determine the appropriate number of child
nodes of each internal node required to optimize the coding in the
variable-branch tree codebook, while the number of child nodes
of each internal node is fixed in the other TSVQs. VBTSVQ ac-
tually outperforms the other fixed-branch TSVQs. Furthermore,
although VBTSVQ and aVBTSVQ(LBG) have the
same variable-branch tree codebook structure, the coding quality
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Fig. 7. Performance comparison between the multiclassification encoding method and the other encoding methods for image data. (a) The performance of the
various encoding methods in VBTSVQ. (b) The performance of the various encoding methods in VLTSVQ. (c) The performance of the various encoding methods
in PTSVQ. (d) The performance of the various encoding methods in BTSVQ.

obtained using VBTSVQ is better than that obtained
using VBTSVQ(LBG) because the GA1 algorithm can search
for a better clustering result than the LBG algorithm for a given
data set.

C. Performance of the Multiclassification Encoding Method

The efficiency of the multiclassification encoding method
was compared with that of the united-center encoding method,
Chang’s method [12] and Tao’s method [14]. The parameters
used in GA2 were population size 100, crossover rate 80%, and
mutation rate 5%. The algorithm was run for 500 generations
and the best solution was retained. In Tao’s method, the number
of cluster centers was set to the average number of classified
components in that cluster in the multiclassification encoding
method. Figs. 6 and 7 compare these encoding methods. In Figs.
6 and 7, the multiclassification encoding method outperforms the
other encoding methods. Figs. 6 and 7 present two phenomena.
First, the multiclassification encoding method and the method
in [14] outperform the united-center encoding method and that
in [12], because the latter two use only one center to represent
all objects in a cluster, and a classification error generally arises
when the cluster is large or nonspherical. Second, the coding
quality of the multiclassification encoding method is better than
that of the method in [14]. In [14], the cluster centers are deter-
mined according to the density of each object in the cluster. The

initial cluster centers thus are sensitive to object distribution. In
the multiclassification encoding method, classified component
selection in each cluster is determined based on the density of
each component, and the classified components in each cluster
are close to the other clusters. The classification error in the
danger regions between any two pairs of clusters thus can be
reduced. Table III lists the search rates of the various encoding
methods in VBTSVQ, where search rate indicates the percentage
similarity between the sought codeword and that sought by the
full search method. The performance of the multiclassification
encoding method is close to that of the full search method, as
shown in Figs. 6 and 7.

V. CONCLUSION

TSVQ has the advantage of more efficient codebook searches
than traditional full-search vector quantizers. However, dividing
a set of training samples into a fixed number of clusters in TSVQ
is sometimes inappropriate. Specifically, such division gener-
ally increases either the bit rate or the average distortion, or
both. This paper thus proposed VBTSVQ. The GA1 algorithm
is proposed to automatically search for the appropriate number
of branches of each splitting node to maximize the value of ,
which is the slope of the distortion-rate function. Moreover, the
threshold also is provided to control the width and depth of the
variable-branch tree codebook in VBTSVQ. Although the GA1
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TABLE III
SEARCH RATE OF THE COMPARISON OF THE VARIOUS CODING METHODS IN VBTSVQ(r = 1:5). (a) SPEECH DATA. (b) IMAGE DATA

algorithm requires more time to design the VBTSVQ than
the LBG algorithm requires to design the fixed-branch TSVQ,
VBTSVQ outperforms the fixed-branch TSVQ, as shown in
our experiments.

This paper proposes the multiclassification encoding method
that uses the classified components. The GA2 algorithm not only
searches for classified components to represent each cluster, but
also requires that these classified components are close to other
clusters. Hence, the classification error is reduced in the danger
regions. Also, users do not care about the number of classi-
fied components in each cluster, because the GA2 algorithm
can seek the minimum number of classified components of each
cluster. In the experiments conducted here, the search rate of the
multiclassification encoding method exceeds that of the other
encoding methods.
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