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General-Tree-Structured Vector Quantizer for Image Progressive Coding
Using the Smooth Side-Match Method

Shiueng-Bien Yang

Abstract—Several tree-structured vector quantizers have
recently been proposed. However, owing to the fact that all
trees used are fixed M-ary tree-structured, the training samples
contained in each node must be artificially divided into a fixed
number of clusters. This paper presents a general-tree-struc-
tured vector quantizer (GTSVQ) based on a genetic clustering
algorithm that can divide the training samples contained in each
node into more natural clusters. Also, the Huffman tree decoder
is used to achieve the optimal bit rate after the construction of
the general-tree-structured encoder. Progressive coding can be
accomplished by giving a series of distortion or rate thresholds.
Moreover, a smooth side-match method is presented herein
to enhance the performance of coding quality according to
the smoothness of the gray levels between neighboring blocks.
The combination of the Huffman tree decoder and the smooth
side-match method is proposed herein. Furthermore, the Lena
image can be coded by GTSVQ with 0.198 bpp and 34.3 dB in
peak signal-to-noise ratio.

Index Terms—Genetic clustering algorithm, Huffman coding,
smooth side-match method, tree-structured vector quantizer.

I. INTRODUCTION

V ECTOR QUANTIZATION (VQ) is a useful technique for
data compression and coding, particularly in image and

speech coding. The design of the codebook is the key issue for
vector quantization. Two points are important in codebook de-
sign. First, a good set of codewords that minimizes quantiza-
tion errors must be found. The LBG algorithm [1] had been
widely used in codebook design. However, the LBG algorithm
also suffers another drawback in that the user must provide the
number of clusters in advance, yet generally has no idea about
how many clusters there should be in the data set. This paper
uses a genetic clustering algorithm ([2], [3]) in the codebook
design. This algorithm searches for an appropriate number of
cluster centers and then simultaneously performs the clustering.
The user need not be concerned about the number of clusters in
the genetic clustering algorithm. The second important point is
to try to make the codebook search as fast as possible. The full
search VQ searches the whole codebook sequentially, and re-
quires a time of when the codebook containscodewords.
In the tree-structured vector quantizers (TSVQ) ([4]–[10]), the
codebook search requires a time of about when the
tree-structured codebook is roughly a balanced tree. The above
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marks a great improvement in time complexity because a code-
book may be large.

In [4], the TSVQ was designed one layer at a time using the
generalized Lloyd algorithm. Each new layer of the tree was ob-
tained by splitting each leaf node of the previous layer into two
nodes, and thus the tree grows into a balanced tree that imple-
ments a fixed-rate code. In [5], an alternative TSVQ design algo-
rithm was introduced. The tree is grown one node at a time rather
than one layer at a time, and the node that contributes most to
decreasing the overall distortion is chosen for splitting. The tree
is grown into an unbalanced tree whose leaves equal a predeter-
mined number, which is a power of two. Chouet al.[6] proposed
a method for designing an unbalanced tree coder. First, a bal-
anced fixed-rate TSVQ is grown to a predetermined height, and
is then optimally pruned back by using the generalized Breiman,
Friedman, Olshen, and Stone (BFOS) algorithm [11]. This algo-
rithm works by always pruning off the subtree with the smallest
value of , where is defined as the ratio of the increase in dis-
tortion to the decrease in rate. Riskinet al.[7] proposed a greedy
method for node splitting and tree growing. Balakrishnanet al.
[8] proposed a recursive splitting process to grow the tree, which
outperforms [7]. All of the tree-structured coders mentioned
above are fixed M-ary trees, meaning that when a node is split,
the training samples contained in that node have to divide into a
fixed number of clusters. However, cases usually occur where it
is inappropriate to divide the set of training samples into a fixed
number of clusters. In this paper, the genetic clustering algo-
rithm is presented to search for a proper number of clusters in
the data set by itself. Applying this genetic clustering algorithm
allows a general-tree-structured vector quantizer to be proposed.
A distortion or rate threshold is used as a stopping threshold of
growing the general-tree coder. Furthermore, all leave nodes in
the general-tree coder are used to build a Huffman tree [12] de-
coder. Specifying a series of distortion or rate thresholds also
allows the implementation of the progressive coding.

Side-match vector quantizer (SMVQ) [13] is a well-known
class of finite-state vector quantizers (FSVQ) and several vari-
ants have been proposed (e.g., [14]–[16]). SMVQ selects the
codewords used to construct the state codebook such that the
gray levels of pixels across the boundaries of neighboring blocks
are as uniform as possible. However, in real images, the change
of gray levels among the neighboring pixels is generally smooth.
In this paper, the smooth side-match method is presented. The
smooth side-match method selects the codeword nearest to the
encoded block according to the smoothness of the gray levels
of pixels between neighboring blocks. In GTSVQ, we use the
smooth side-match method to select the better codeword in the
decoder, thus enhancing the coding quality.

The remainder of this paper is organized as follows. Sec-
tion II presents the design of the smooth side-match method,
while Section III describes the designs of the general-tree coder
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Fig. 1. Neighboring blocks used in the smooth side-match method.

and the Huffman tree decoder for GTSVQ. Section IV pro-
vides the design of the GTSVQ, while Section V describes the
genetic clustering algorithm. Finally, experiments are given in
Section VI and conclusions are presented in Section VII.

II. DESIGN OFSMOOTH SIDE-MATCH METHOD

SMVQ tries to make the gray levels of pixels right across the
boundaries of neighboring blocks as near as possible. However,
if the gray levels of pixels across the boundaries between neigh-
boring blocks is increasing or decreasing, SMVQ does not en-
code a block well. In real images, the changing of gray levels
is in general smooth among the neighboring pixels. We use this
property to define the smooth side-match distortion. We first de-
fine the difference between the pixels and as fol-
lows:

dif gray level of gray level of (1)

In GTSVQ, the diagonal blocks are selected as the basic blocks,
and they are encoded first. The encoded image is therefore di-
vided into two parts, the upper triangular region and the lower
triangular region. In the upper triangular region, the neighboring
blocks of the currently encoded block are defined to be its left
block and its lower block. An example is shown in Fig. 1(a). The
vertical smooth side-match distortion is defined as

Upper
dif dif

dif y (2)

and the horizontal smooth side-match distortion is defined as

Upper
dif dif

dif (3)

Then, the smooth side-match distortion of the codewordis
defined as

Upper Upper (4)

In the lower triangular region, the neighboring blocks of each
encoded block are defined to be its right block and its upper

block. An example is depicted in Fig. 1(b). The vertical smooth
side-match distortion is defined as

Lower
dif dif

dif (5)

and the horizontal smooth side-match distortion is defined as

Lower
dif dif

dif (6)

Then, the smooth side-match distortion of the codeword y is
defined as

Lower Lower (7)

In GTSVQ, the codeword that has the smallest is regarded
as the decoding result.

III. D ESIGNS OF THEGENERAL-TREE CODER AND THE

HUFFMAN-TREE DECODER

Before describing how the general-tree coder and the
Huffman-tree decoder are constructed, the data fields used
are introduced. The structure of data fields for a node in the
general-tree coder is (distortion level, codeword, code, number
of training samples), and the structure of data fields for a node
in the Huffman-tree decoder is (distortion level, codeword,
number of training samples). The “distortion level” field is used
mainly for progressive coding, in which many coding levels
are required to encode an image. For each coding level, the
coder may send the partial code of input data to the decoder,
and the input data can then be decoded by this partial code
in the decoder. After the final coding level is finished, input
data can be completely decoded in the decoder. The “distortion
level” records whether or not a node in the tree can be used
to encode input data in this coding level during progressive
coding. The “codeword” fields of leaf nodes are the codewords
of this tree-structured codebook. The “code” field of each leaf
node contains the code for the corresponding codeword. The
“number of training samples” field contains the size of the set
of training samples.

Section III-A describes the design of the general-tree coder
and the Huffman tree decoder with the distortion thresholds,
while Section III-B presents the design of the general-tree coder
and the Huffman tree decoder with the rate thresholds.

A. Distortion Thresholds

The average distortion of node X is first defined as fol-
lows. Let X be a node containing a set of training samples

and let be the center of this set. Notably,
the “center of the set” indicates the mean value of the samples
in this set. The average distortion of nodeis defined as

(8)



YANG: GTSVQ FOR IMAGE-PROGRESSIVE CODING 195

where is the Euclidean distance between vectors
and .

The algorithm CLUSTERING, described in Section V, is
used to design the general-tree coder with distortion thresholds
as follows. At first, the first stage of CLUSTERING is applied
to the set of whole training samples and a set of connected
components is obtained. The distortion
threshold is defined as follows:

(the set of whole training samples)
(9)

where (the set of whole training samples) is defined as (8)
in this section, and where is given by the user. After the tree
coder had been constructed, the average distortion of each leaf
node will be less than or equal to, implying that the average
quantization error will be less than or equal towhen the tree
coder is used to code all the training samples.

The genetic algorithm is then applied to
in the second stage of CLUSTERING. The details of the gen-
eral-tree coder design process are described in the following.

Algorithm:

General_Tree_Construction_Distortion

_Thresholds

Input: A set of training objects fB1; B2; . . . :; Bmg

contained in a node B, where each Bi is

itself a set of objects. The distortion

threshold � and the coding level c.

Output: A general-tree coder TB , with an av-

erage distortion for each leaf node of less

than or equal to �, and with the Huffman de-

coding tree HB .

Step 1) Set node to the root node of the general-tree coder
. Apply the second stage of CLUSTERING to the

set of training samples contained in the node, ob-
taining p clusters . Each cluster is
designed as a child node of nodein .

Step 2) For each leaf node in the general-tree coder , do
the following.

Step 2.1)

If The average distortion of node

Y is greater than �.

Then Set the distortion level

of node Y to 0. Apply the second stage of

CLUSTERING to the set of training samples

contained in the node Y to design the child

nodes of node Y in TB .

Else Set the distortion level of

node Y to c.

Step 3) (The coder tree has been constructed). Take all the
leaf nodes in to design the corresponding Huffman

tree decoder based on the values of the “number of
training samples” field.

Step 4) Traverse each leaf node of to find the code for this
node and put this code into the “code” field of the cor-
responding node in the coder tree. The “distortion
level” field of internal nodes are set to 0, andfor the
leaf nodes in and . Stop.

The construction of the general-tree coder for pro-
gressive coding, when k distortion thresholds are set as

, is described as follows. Initially, the
algorithm General_Tree_Construction_Distor-
tion_Thresholds is used to construct the coder with
one coding level and the corresponding decoder, with the
value of coding level c set as 1. To make progressive coding
possible, the construction of the coder treewith k coding
levels and the corresponding Huffman decoding tree is
described herein, given that the coder and the decoder

. The construction algorithm is presented below.

Algorithm:

Progressive_General_Tree_Construction

_Distortion_Thresholds

Input: A general-tree coder Tk�1 with k � 1

coding levels and the corresponding Huffman

decoding tree Hk�1. The distortion threshold

�k and the coding level k.

Output: A general-tree coder Tk with average

distortion of each leaf node less than or

equaling to �k and the Huffman decoding tree

Hk. Tk is capable of progressive coding with

kcoding levels.

Step 1) For each leaf nodein do the following.
Step 1.1) Let the node be.

If The average distortion of X is

greater than �k.

Then Apply the algorithm Gen-

eral_Tree_Construction_Distortion_Thresholds

to the node X, given two parameters, the

distortion threshold �k and the coding

level k. The general-tree coder TX and

corresponding Huffman decoding tree HX are

then obtained. Let node X in Tk�1 be the root

node of TX , and let the corresponding node X

in Hk�1 be the root node of HX .

Else Set both distortion levels of node

X in Tk�1 and Hk�1 to k.

Step 2) Stop.

B. Rate Thresholds

This section designs the growing method for the general-tree
coder before describing the designs of the general-tree coder and
the Huffman tree decoder with the rate thresholds. In our ap-
proach, splitting one node at a time grows the general-tree. Let

denote the set of leave nodes in the general-tree, including
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node . Let represent the probability on the training sam-
ples in node , and let denote the bits required to repre-
sent node . They are defined as

the number of training samples contained in node X
all of the training samples

(10)

the number of bits representing the Huffman code

of the node X (11)

Finally, let and indicate the distortion and rate, re-
spectively, measured by. The tree then indicates the tree
after node is split into nodes, , by the second
stage of CLUSTERING. Then

(12)

(13)

(14)

(15)

Thus, the ratio of the change in distortion to change in rate due
to splitting leaf node X, is defined as

(16)

The design of the growing method is to select the node with
the largest to be split at a time in general-tree coder. The
process of growing algorithmFind_Split_Node is detailed
as follows.

Algorithm: Find_Split_Node

Input: A general-tree coder T .

Output: A splitting node X̂ in the coder tree

T and the value of � for node X̂.

Step 1) Set queues and to be empty.

If Only one node, namely the root node,

exists in the coder tree T .

Then Put the root node to the queue Q.

Else Put all of the leaf nodes of coder

tree T to the queue Q.

Step 2) For each node in queue , do the following:
Step 2.1) Apply the second stage of CLUSTERING to the

set of training samples contained in node X, thus
obtaining p clusters .

Step 2.2) Design each child node of node , for
, but do not split node in coder tree .

For each node , set the pointer of node to ,
fill the size of to the field “number of training
samples” and compute the center of.

Step 2.3) Let denote the coder tree after splitting node
in . Use these leaf nodes in to design a

Huffman decoding tree based on the values of
the fields “number of training samples”. Traverse
each leaf node of to find the code for this node
and put this code into the “code” field of the cor-
responding node in coder tree.

Step 2.4) Calculate the value ofas in (16) when node
in the coder tree is split to form coder tree .
Insert the value of to the queue .

Step 3) Search queue for the maximum value of , and let
node have a maximum value of in . The node

and its corresponding are the output.
Step 4) Stop.

Designs of the general-tree coder and the Huffman tree
decoder with the rate thresholds are described as follows. The
first stage of CLUSTERING is applied to the set of whole
training samples, thus obtaining a set of connected components

. Then, the second stage of CLUSTERING
is applied to to construct the general-tree
coder and the Huffman tree decoder with the rate thresholds.
Before designing the general-tree coder, the user must give a
rate threshold for the general-tree coder. The general-tree is
grown one node at a time. The growing process continues until
the average rate of the general-tree reaches the rate threshold.
The algorithm for designing the general-tree coder and the
Huffman-tree decoder with rate thresholds is as follows.

Algorithm:

General_Tree_Construction_Rate_Thresholds

Input: A set of training objects fB1; B2; . . . ; Bmg

is contained in a node B, where each Bi is

itself a set of objects. The rate threshold

Rc and the coding level c.

Output: A general-tree coder TB with an av-

erage rate of less than or equal to Rc and

the Huffman tree decoder HB .

Step 1) Set node B as the root node of tree. Set Rate .
Step 2) while The value of Rate is smaller than .

Step 2.1) Apply the algorithmFind_Split_Node to the
tree . Let node denote the node to be split in

, then split node in the coder tree to con-
struct a new coder tree . Use all the leaf nodes
of the general-tree coder to construct the cor-
responding Huffman tree decoder . Traverse
each leaf node of to find the code and put this
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code into the “code” field of the corresponding
node in the coder tree .

Step 2.2) Rate , where is defined as in
(15). Set and .

Step 3) Apply the algorithmFind_Split_Node to the tree
. Let node denote the node to be split in , then

split node in the coder tree to construct a new
coder tree . Use all the leaf nodes of the general-tree
coder to construct the corresponding Huffman tree
decoder . Traverse each leaf node of to find
the code and put this code into the “code” field of the
corresponding node in the coder tree.

Step 4) Rate , where is defined as in (15). Set
and .

Step 5) Apply the algorithmFind_Split_Node to the tree
. Let node denote the node to be split in , then

split node in the coder tree to construct a new
coder tree . Use all the leaf nodes of the general-tree
coder to construct the corresponding Huffman tree
decoder . Traverse each leaf node of to find
the code and put this code into the “code” field of the
corresponding node in the coder tree.

Step 6) Rate , where is defined as in (15). Set
and .

Step 7) Set the distortion levels at 0 and c for the internal and
leaf nodes in , respectively.

Step 8) Output coder tree and corresponding decoder tree
. Stop.

This paper describes how to construct the general-tree
coder for progressive coding, whenrate thresholds are set
as , as follows. First, the algorithm
General_Tree_Construction_Rate_Thresholds
is used to construct the coder with one coding level and
the corresponding decoder , given a coding level of 1 and
a rate threshold of .The construction of the coder tree
with coding levels and the corresponding Huffman decoding
tree is then described, given that the coder and the
decoder . The construction algorithm is presented below.

Algorithm:

Progressive_General_Tree_Construction_Rate_

Thresholds

Input: A general-tree coder Tk�1 with k-1

coding levels and the corresponding Huffman

decoding tree Hk�1. The rate threshold Rk

and the coding level k.

Output: A general-tree coder Tk with an av-

erage rate of less than or equal to Rk and

the Huffman decoding tree Hk. Tk is capable

of progressive coding with k coding levels.

Step 1) Let there be q leave nodes, , in .
Set each node to be the root node of tree , for

. Set Rate and , for
.

Step 2) while The value of Rate is smaller than .
Step 2.1) Set the queue to be empty.
Step 2.2) For each tree, , for , do the fol-

lowing.
Step 2.2.1) Apply the algorithm Find_Split_Node to

the tree . Let node be the node to be
split in . Insert the corresponding value
of for node into queue .

Step 2.3) Search queue for the maximum value of . Let
the node have a maximum value ofin , and
let node be contained in tree . Split node
in the coder tree to construct a new coder tree

. All the leaf nodes of coder tree are used
to construct the corresponding Huffman decoder
tree .

Step 2.4) Let be the increased rate when the nodeis
split in coder tree to form the coder tree .
Set .

Step 2.5) Rate Rate . Set and
.

Step 3) Set the distortion levels at 0 and k for the internal and
leaf nodes in , respectively, for .

Step 4) Set each leaf node in as the root node of
and set the corresponding nodein as the root
node of , for .

Step 5) Output the coder tree and the corresponding decoder
tree . Stop.

IV. DESIGN OF THEGTSVQ

This section describes the design of GTSVQ. [17]–[19] used
discrete cosine transform (DCT) coefficients as the edge ori-
ented features. However, in GTSVQ, all training images were
divided into blocks of size 4 4, and each block was then
transformed into the DCT coefficients by DCT. Six DCT co-
efficients were sufficient to serve as clustering features, where
c(0, i)’s represent the horizontal features and c(i, 0)’s denote
the vertical features for . The CLUSTERING al-
gorithm is used to construct the general-tree coder and corre-
sponding Huffman tree decoder. However, the codeword con-
tained in each leaf node in the Huffman tree decoder takes the
form of the DCT coefficients. To make it possible to apply the
smooth-side match method in the decoding phase, the inversed
DCT (IDCT) was used to transform the DCT coefficients in each
leaf node into a spatial vector, with this spatial vector repre-
senting the codewords. The smooth side-match distortions of
the codewords can then be calculated in the decoder, and the
codeword with the smallest smooth side-match distortion is the
decoding result. Fig. 2 presents an example illustrating the en-
coder and the decoder. The encoder treeis employed in Fig. 2
to perform progressive coding with three coding levels, meaning
three codes are obtained when a block is encoded, one for each
coding level.

The image coding process for GTSVQ will be described next.
Initially, all the diagonal blocks, those from the left-upper block
to the right-lower block in an image, are encoded directly using
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(a)

(b)

Fig. 2. Example of the coder treeT and the Huffman decoding treeH . (a)
The coder treeT ; (b) The Huffman decoding treeH .

all of the codewords contained in the leave nodes of the gen-
eral-tree coder , and are then decoded using the Huffman
tree decoder . After the diagonal blocks are coded, the other
blocks are progressively encoded. Meanwhile, coding a vector
qusing the coder tree with three coding levels involves the
following steps. In the first coding level, the distances ,

, and are computed. Supposeis nearest
to , check the value of the distortion level. If the distortion
level equals zero, further steps are required. Then, the distances

, , and are calculated. Suppose
is closest to , since the distortion level of this node is

1, the process is stopped and the code 1011 contained inis
sent to the Huffman decoding tree. In the Huffman tree decoder,
two steps are required to determine the decoding result. First,
the decoder tree is traversed according to code 1011 and
then node is obtained in . Second, the smooth side-match
distortions are calculated for all of the leaf nodes contained
in the subtree rooted at node , namely , , , and

. The codeword with the smallest smooth side-match distor-

tion among , , , and is the decoding result. The
second coding level requires further steps, because the coding
level of this node (which is 2) is greater than the distor-
tion level (which is 1). Distances and
are computed. Supposeis nearer to ; then, since the dis-
tortion level of this node is 2, the process stops, and code 0 is
sent to the Huffman decoding tree. Similarly, node is ob-
tained when code 0 is received by decoder. Also, the smooth
side-match distortions for all of the leaf nodes contained in the
subtree rooted at node are calculated, namely , and

, and that with the smallest smooth side-match distortion is
the decoding result in the second coding level. Furthermore, in
the third coding level, because the coding level of this node
(which is 3) is greater than the distortion level (which is 2), fur-
ther steps are required. Consequently, the distances ,

, and must be calculated. Suppose q is
nearest to , the code 01 contained in node is sent to
the decoder . Because the coding level (which is 3) is now
no greater than the distortion level of node (which is 3), the
coding process is stopped. Finally, the codewordis obtained
in . Clearly, the smooth side-match method need not be used
at the third coding level.

However, the distortion level of node in is 2, meaning
that if node is used to encode some block in the first coding
level, it can also be used to encode this block in the second
coding level. Thus, the coder does not send any code for this
block to the decoder in the second coding level until the third
coding level begins. In the second coding level, the decoder
only needs to calculate the smooth side-match distortions of two
nodes and and outputs the better one as the decoding
result.

Notably, in the case of a single coding level, the Huffman tree
decoder achieves the optimal Huffman codes. In the progres-
sive coding case, the Huffman tree decoder does not achieve the
optimal Huffman codes, since the Huffman tree decoder is the
combination of several Huffman trees. That is, the partial codes
sent from the coder to the decoder for each coding level are op-
timal Huffman codes. However, the total of bit rate received in
the decoder is clearly not optimal.

V. THE GENETIC CLUSTERING ALGORITHM

The CLUSTERING algorithm uses the genetic strategy to au-
tomatically search for the proper number of clusters and find a
good clustering. The algorithm CLUSTERING consists of two
stages. The first stage is the nearest neighbor (NN) algorithm
[20]. The distance used to group objects in the NN algorithm is
based on the average of the nearest neighbor distances. Mean-
while, the second stage consists of a heuristic method and a ge-
netic algorithm. The heuristic method is used to identify a good
clustering by applying the genetic algorithm [21].

The design of the codebook denotes each training block
with a size of 4 4 as an object in the CLUSTERING algo-
rithm. Let there be objects, , and suppose
that each object is characterized byfeature values, then

. The first stage of CLUS-
TERING, that is, the NN algorithm, is described below.
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Step 1) For each object , find the distance between and
its nearest neighbor. That is

where

(17)

Step 2) Compute , the average of the nearest neighbor dis-
tances, as follows:

Let d (18)

Step 3) View the objects as nodes of a graph, and compute
the adjacency matrix as follows:

if O O d
otherwise

(19)

where .
Step 4) Find the connected components of this graph, and let

them be denoted by .
[21] showed that the value of u may be chosen from the in-

terval [1.4, 1.8], and that the exact value is not critical to the
clustering result. Herein, u is set at 1.5. For the genetic algo-
rithm, the initial data set contains m small sets ,
where the center of each set is denoted by for .
Clearly, is smaller than the original data set, which is. The
objective of using the NN algorithm in the first stage is to reduce
computational time and space during the second stage. Hence,
the genetic algorithm in the second stage can process large data
sets efficiently.

The genetic algorithm consists of an initialization step and
the iterative generations with three phases, namely the repro-
duction, crossover and mutation phases. They are described as
follows.

Initialization Step

Let be the population size in the genetic algorithm. A
population of binary strings is randomly generated. The
length of each string is , which is the number of sets obtained
in the first stage. binary strings are generated in such a
way that the number of 1’s in the strings is almost uniformly
distributed within [1,m]. Meanwhile, each string represents a
subset of . If is in this subset, theth
position of the string will be 1; otherwise, it will be 0. Each
in the subset is used as a seed to generate a cluster.

Before describing the three phases, the method of gen-
erating a clustering from the seeds is described. Let

be the subset corresponding to a
string, initial clusters be for . Furthermore,
let the initial centers of clusters be for
and let the size of cluster be defined as for

, where denotes the number of objects
belonging to the set .

Clusters are generated as follows. The ’s in
are taken one by one and the distance

between the center of the taken and each center is
calculated. Then we have

if for (20)

If is included in cluster , the center and the size of
cluster are recomputed as follows when is added to

(21)

After the ’s in have all been consid-
ered, the cluster with center generated by the seed for

is obtained. is defined as the
set of clusters generated by this string.

Reproduction Phase

Let be one of the clusters generated by string. The fol-
lowing defines as the intra-distance in the clusterand
defines as the inter-distance betweenand the set of all
other clusters

(22)

(23)

where the summation is over all ’s that are in cluster . The
fitness function of a string can then be defined as follows:

Fitness (24)

where the summation is over all clustersgenerated by string
and denotes a weighting factor. If w is assigned a small

value, the importance of is emphasized, which tends
to produce more numerous and compact clusters. Meanwhile, if

is assigned a large value, the importance of is em-
phasized, which tends to produce fewer and looser clusters than
if is small. After the calculation of the fitness of each string in
the population, the reproduction operator is implemented using
a roulette wheel with slots sized according to fitness.

In the codebook design, the center of each cluster generated
by the string with the highest fitness represents the codeword,
since the string with the highest fitness represents a better clus-
tering in the set of training objects.

Crossover Phase

If a pair of strings and are chosen for applying the
crossover operator, two random numbersand in are
generated to decide which pieces of the strings are to be inter-
changed. Suppose , then the bits from position to po-
sition of string will be interchanged with those bits in the
same positions of string . For each chosen pair of strings, the
crossover operator is done with probability. The significance
of the crossover phase in codebook design lies in performing the
interchange of the codewords contained in various strings.

Mutation Phase

During the mutation phase, the bits of the strings in the pop-
ulation are chosen with probability . Each chosen bit is then
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TABLE I
COMPARISON OF THEVARIOUS METHODS FOR THECODED IMAGE “L ENA”

changed from 0 to 1 or from 1 to 0, with a chosen cluster thus
being discarded or produced in a string. Meanwhile, a code-
word can be produced in codebook design by changing the cor-
responding bit from 0 to 1 or discarded by changing the corre-
sponding bit from 1 to 0 during the mutation phase.

VI. EXPERIMENTS

The parameters used in the genetic algorithm in the experi-
ments are as follows, namely a population size of 50, a crossover
rate of 80%, and a mutation rate of 5%. One hundred generations
were run and the best solution was retained. The parameter
had a value within , obtaining the number of branches be-
tween 2 and 20 when each node is split. Meanwhile,was set
to 1.5 in the first stage of CLUSTERING. In [3], it was shown
that the values of and were not critical.

Five 512 512 (pixels) images with 256 gray levels were
employed as the training images, and were divided into 44
blocks to construct the general-tree coder and corresponding
Huffman tree decoder. Table I compares the proposed method
with the other three methods. Three other methods, Balakr-
ishnan’s method [8], Chou’s method [6], and the balanced
binary-tree VQ were implemented for purposes of compar-
ison with the proposed method. These three methods were
termed VLTSVQ, PTSVQ, and BTSVQ. In PTSVQ, the tree
was grown to a height of 11 before pruning. Also, these
three TSVQs are easily designed using the M-ary trees,
namely VLTSVQ(M), PTSVQ(M), and BTSVQ(M), where
M denotes the average number of children of a node in
the general-tree coder designed by GTSVQ. In Table I, M
is set to five for these three TSVQ(M)s, and the Huffman

TABLE II
PERCENTAGES TOWHICH THAT THE SEARCHED CODEWORDS INFOUR

CODING LEVELS ARE THESAME AS THAT OF THE FIFTH CODING LEVEL IN

THE GTSVQ[SMOOTH]

coding is also used to design the codes in the TSVQ(M)s,
as considered in GTSVQ. To compare the various methods
listed in Table I, each coder is designed using the same
structure. The CLUSTERING algorithm was first used to
design the general-tree coder with five coding levels, and
then these three TSVQs were applied separately to obtain
the same size for each codebook by using the clustering
algorithm LBG. The numbers of codewords for the five
coding levels listed in Table I are 23, 58, 78, 171, and
302. GTSVQ[VQ] indicates the coding result by searching
the whole leaf nodes in the general-tree coder. Meanwhile,
GTSVQ[Without] indicates the coding result of GTSVQ
without using the smooth side-match method in the decoder.
Thus, the second step in the decoder could be omitted in
GTSVQ[Without]. The GTSVQ[Side] and GTSVQ[Smooth]
show the coding results of the GTSVQ using the conventional
side-match method and the smooth side-match method, re-
spectively, in the second step of the decoder. However, these
three TSVQ’s can use the smooth side-match method in the
decoder just as the GTSVQ[Smooth]. For example, the coding
quality of the “Lena” image encoded by VLTSVQ[Smooth]
and VLTSVQ(M)[Smooth] in Table I is better than that en-
coded by VLTSVQ and VLTSVQ(M), respectively. Further-
more, the coding quality of GTSVQ[Smooth] is better than
that of VLTSVQ(M)[Smooth] encoded, because the CLUS-
TERING algorithm can search the proper number of child
nodes when splitting a node in the coder tree. Notably, in
Table I, the coding quality of the “Lena” image encoded
by GTSVQ[Smooth] is 34.3 dB at 0.198 bpp in the first
coding level and 36.1 dB at 0.454 bpp in the fifth coding
level. That is, the PSNR gain from doubling the coding rate
at 0.198 bpp is within 2 dB. This phenomenon occurs be-
cause the codeword encoded for each input block in the
first coding level is usually the same as the codeword en-
coded in the fifth coding level, when the smooth side-match
method is used in the decoder of GTSVQ[Smooth] to search
for the codeword with the smallest smooth side-match dis-
tortion as the decoding result. Therefore, the PSNR is en-
hanced in GTSVQ[Smooth] when the bit rate is low. Table II
lists the percentages to which that the codewords encoded
for each coding level are the same as that of the fifth
coding level in GTSVQ[Smooth]. Meanwhile, Fig. 3 com-
pares the coding quality of the various methods, and reveals
that GTSVQ[Smooth] has better coding quality than other
coding methods. Three reasons for this phenomenon exist.
First, the algorithm CLUSTERING searches clusters more
effectively than the algorithm LBG. GTSVQ[LBG] uses the
LGB algorithm to design the general-tree coder as the same
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(a) (b)

(c)

Fig. 3. Comparison of coding performance by the various coding methods. (a) Coding quality of the “Lena” image. (b) Coding quality of the “F-16” image.(c)
Coding quality of the “Boat” image.

structure of GTSVQ[Without]. GTSVQ[Without] achieves
higher PSNR in its coding quality than the GTSVQ[LBG].
Second, the decoder of GTSVQ[Smooth] uses the smooth
side-match method in the second step to select a codeword
with the smallest side-match distortion as the decoding re-
sult, thus achieving a better solution than only using first
step in the decoder of GTSVQ[Smooth], as GTSVQ[Without]
does. That is, when the bit rate is low, Fig. 4(a) and
4(b) display the coding results by using GTSVQ[Without]
and GTSVQ[Smooth], respectively, when the first coding
level is finished. Fig. 4 reveals that coding quality is en-
hanced when the smooth side-match method is used in
GTSVQ[Smooth]. Third, GTSVQ generally achieves a higher
search rate than conventional TSVQs based on a binary tree
structure. Table III lists the search rates of the various coding
methods, with search rate indicating the percentage to which
that the searched codeword is the same as that of the full
search. In the genetic algorithm, if is small, the genetic
algorithm tends to produce more clusters and the general tree
widens, meaning that search time lengthens but PSNR tends
to increase. Meanwhile, if is large, the algorithm tends to
produce fewer clusters and the general-tree will be narrower,
meaning that searching time is reduced but so too is PSNR.
The general-tree vector quantizer is, therefore, something be-
tween two extremes, the binary tree vector quantizer and the

(a) (b)

(c)

Fig. 4. “Lena” image encoded by using the methods GTSVQ(Without) and
GTSVQ(Smooth). (a) Image encoded by the method GTSVQ(Without) (25.8
dB, 0.197 bpp). (b) Image encoded by the method GTSVQ(Smooth) (34.3 dB,
0.198 bpp). (c) Original “Lena” image.
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TABLE III
SEARCH RATE OF THE COMPARISON OF OURMETHOD AND THE

OTHER METHODS

full search vector quantizer. Consequently, the search rate of
the proposed method exceeds that of conventional TSVQs.

VII. CONCLUSIONS

TSVQ has the advantage of more efficient codebook searches
than traditional full-search vector quantizers. However, it is
improper to always divide a set of training samples into a
fixed number of clusters in TSVQ. This generally causes an
increase in either the bit rate, or the average distortion, or both.
A general-tree-structured vector quantizer is proposed herein.
The CLUSTERING algorithm is used to divide a set of training
samples into several natural clusters in accordance to the char-
acteristics of the training data set. Following the construction of
the general-tree coder, the Huffman coding is used to optimize
the bit rate. Progressive coding can also be achieved by using
the method designed herein. Moreover, the smooth side-match
method is presented in this paper. Combining the Huffman
tree decoder and the smooth side-match method to select the
codewords in the decoder yields good coding quality at a lower
bit rate. As evidenced by the experimental results, the proposed
method achieves a higher PSNR and lower average bit rate than
other methods when applied to the same data set.
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