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General-Tree-Structured Vector Quantizer for Image Progressive Coding
Using the Smooth Side-Match Method

Shiueng-Bien Yang

Abstract—Several tree-structured vector quantizers have marks a greatimprovementin time complexity because a code-
recently been proposed. However, owing to the fact that all pook may be large.
trees .”S%d.are ﬁ’;]ed l\él-ary ”eeb's"“C.tf‘.”?‘ﬂ' tgg .gag“.”g sar?_pleds In [4], the TSVQ was designed one layer at a time using the
contained In each node must be artificial y aivide Into a fixe . .
number of clusters. This paper presents a general-tree-struc- ggnerallzed I.‘k?yd algorithm. Each neWIayerlofthe tree_was ob-
tured vector quantizer (GTSVQ) based on a genetic clustering tained by splitting each leaf node of the previous layer into two
algorithm that can divide the training samples contained in each Nnodes, and thus the tree grows into a balanced tree that imple-
node into more natural clusters. Also, the Huffman tree decoder ments a fixed-rate code. In [5], an alternative TSVQ design algo-
is used to achieve the optimal bit rate after the construction of rithm was introduced. The tree is grown one node at a time rather
the general-tree-structured encoder. Progressive coding can bethan one layer at a time, and the node that contributes most to
accomplished by giving a series of distortion or rate thresholds. o qea5ing the overall distortion is chosen for splitting. The tree

Moreover, a smooth side-match method is presented herein . .
to enhance the performance of coding quality according to IS 9FOWN into an unbalanced tree whose leaves equal a predeter-

the smoothness of the gray levels between neighboring blocks.Mmined number, whichis a power of two. Chetal.[6] proposed

The combination of the Huffman tree decoder and the smooth a method for designing an unbalanced tree coder. First, a bal-
side-match method is proposed herein. Furthermore, the Lena anced fixed-rate TSVQ is grown to a predetermined height, and
image can be coded by GTSVQ with 0.198 bpp and 34.3 dB in js then optimally pruned back by using the generalized Breiman,

peak signal-to-noise ratio. Friedman, Olshen, and Stone (BFOS) algorithm [11]. This algo-
Index Terms—Genetic clustering algorithm, Huffman coding, rithm works by always pruning off the subtree with the smallest
smooth side-match method, tree-structured vector quantizer. value of\, where) is defined as the ratio of the increase in dis-

tortion to the decrease in rate. Riskital.[7] proposed a greedy

method for node splitting and tree growing. Balakrishegal.

[8] proposed a recursive splitting process to grow the tree, which
ECTOR QUANTIZATION (VQ) is a useful technique for outperforms [7]. All of the tree-structured coders mentioned
data compression and coding, particularly in image arabove are fixed M-ary trees, meaning that when a node is split,

speech coding. The design of the codebook is the key issuette training samples contained in that node have to divide into a

vector quantization. Two points are important in codebook dfixed number of clusters. However, cases usually occur where it

sign. First, a good set of codewords that minimizes guantizainappropriate to divide the set of training samples into a fixed
tion errors must be found. The LBG algorithm [1] had beepumber of clusters. In this paper, the genetic clustering algo-
widely used in codebook design. However, the LBG algorithfithm is presented to search for a proper number of clusters in
also suffers another drawback in that the user must provide the data set by itself. Applying this genetic clustering algorithm
number of clusters in advance, yet generally has no idea abali@ws a general-tree-structured vector quantizer to be proposed.
how many clusters there should be in the data set. This paﬁeqistortion or rate threshold is used as a stopping threshold of
uses a genetic clustering algorithm ([2], [3]) in the codebodiowing the general-tree coder. Furth_ermore, all leave nodes in
design. This algorithm searches for an appropriate number(3¢ g9eneral-tree coder are used to build a Huffman tree [12] de-
cluster centers and then simultaneously performs the clusterif@der- Specifying a series of distortion or rate thresholds also

The user need not be concerned about the number of cluster&Ws the implementation of the progressive coding.

the genetic clustering algorithm. The second important point iFS|de-ma_tch vector quantizer (.SMVQ) [13] is a weII-known_

to try to make the codebook search as fast as possible. The RS of finite-state vector quantizers (FSVQ) and several vari-

. ts have been proposed (e.g., [14]-[16]). SMVQ selects the
segrch V.Q searches the whole codebook sgquentlally, andz}gdewords used to construct the state codebook such that the
quires atime 0O (n) when the codebook containcodewords.

In the tree-structured vector quantizers (TSVQ) ([4]-[10]), th ray levels of pixels across the boundaries of neighboring blocks

debook h ) i £ about hen th re as uniform as possible. However, in real images, the change
codebook search requires a time of abOtogn) when the ¢ ooy evels among the neighboring pixels is generally smooth.
tree-structured codebook is roughly a balanced tree. The abﬂy is paper, the smooth side-match method is presented. The

smooth side-match method selects the codeword nearest to the

encoded block according to the smoothness of the gray levels

Manuscript received October 4, 2000; revised October 2, 2002. This wo . . .
was supported by the National Science Council of the Republic of China uné%fr pixels between neighboring blocks. In GTSVQ, we use the

Contract NSC 90-2213-E-426-001. This paper was recommended by Assocfi800th side-match method to select the better codeword in the
Editor H. Sun. decoder, thus enhancing the coding quality.

The author is with the Department of Computer Science and Informa- The remainder of this paper is Organized as follows. Sec-
tion Engineering, Leader University, Tainan City, Taiwan, R.O.C. (e—mai{: . .
ysb@mail leader edu.tw). ion Il presents the design of the smooth side-match method,

Digital Object Identifier 10.1109/TCSVT.2002.808444 while Section Il describes the designs of the general-tree coder

. INTRODUCTION

1051-8215/03%$17.00 © 2003 IEEE



194 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 2, FEBRUARY 2003

M| n | v [ 12 block. An example is depicted in Fig. 1(b). The vertical smooth
. . y u side-match distortion is defined as
A
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d : e r and the horizontal smooth side-match distortion is defined as
y
Jupa| Ton | | fma m (dlf(’l‘ o T ) + d|f(y Y _1))
Lower_hd — 2,437 35 J,ne J3,n
() ; 5

Fig. 1. Neighboring blocks used in the smooth side-match method.

—dif(r5,1, Yjn)| -quad(6)

and the Huffman tree decoder for GTSVQ. Section IV profFhen, the smooth side-match distortion of the codeword vy is
vides the design of the GTSVQ, while Section V describes tliefined as

genetic clustering algorithm. Finally, experiments are given in

Section VI and conclusions are presented in Section VII. D(y) = Lowervd(y) + Lower_hd(y). @)

In GTSVQ, the codeword that has the smallBsy) is regarded
as the decoding result.

SMVQ tries to make the gray levels of pixels right across the
boundaries of neighboring blocks as near as possible. However, |||. DESIGNS OF THEGENERAL-TREE CODER AND THE
if the gray levels of pixels across the boundaries between neigh- HUFEMAN-TREE DECODER
boring blocks is increasing or decreasing, SMVQ does not en-
code a block well. In real images, the changing of gray level
is in general smooth among the neighboring pixels. We use t
property to define the smooth side-match distortion. We firstd
fine the differencelif (e, f) between the pixels and f as fol-
lows:

Il. DESIGN OFSMOOTH SIDE-MATCH METHOD

Before describing how the general-tree coder and the
ffman-tree decoder are constructed, the data fields used
are introduced. The structure of data fields for a node in the
general-tree coder is (distortion level, codeword, code, number
of training samples), and the structure of data fields for a node
in the Huffman-tree decoder is (distortion level, codeword,
number of training samples). The “distortion level” field is used
mainly for progressive coding, in which many coding levels

. . re required to encode an image. For each coding level, the
In GTSVQ, the diagonal blocks are selected as the basic bloc% der may send the partial code of input data to the decoder,

and they are encoded first. The encoded image is therefore d the input data can then be decoded by this partial code

vided into two parts, the upper triangular region and the Iowﬁ‘{ the decoder. After the final coding level is finished, input

triangular region. In the upper triangular region, the neighbori ta can be completely decoded in the decoder. The “distortion
blocks of the currently encoded block are defined to be its Iq el” records whether or not a node in the tree can be used

block and its lower block. An example is shown in Fig. 1(a).Thﬁ) encode input data in this coding level during progressive

vertical smooth side-match distortion is defined as coding. The “codeword” fields of leaf nodes are the codewords
of this tree-structured codebook. The “code” field of each leaf
node contains the code for the corresponding codeword. The
“number of training samples” field contains the size of the set
(2) of training samples.
Section IlI-A describes the design of the general-tree coder
and the horizontal smooth side-match distortion is defined agind the Huffman tree decoder with the distortion thresholds,
while Section I11-B presents the design of the general-tree coder
(dif(£j,n—1,%jn) + dif (y; 1,9;2)) and the Huffman tree decoder with the rate thresholds.

2
—dif(;.,y51) - (3)

dif (e, f) = (gray level ofe) — (gray level off). (1)

(dif(da i, dv i) + dif (Y ,is Yrm—1,i))
2

—dif(d1i,Y,,.)

Uppetvd(y) = >

i=1

Uppethd(y) = >

m
=1

A. Distortion Thresholds

The average distortion of node X is first defined as fol-
lows. Let X be a node containing a set of training samples
{01,04,...,0,} and letS be the center of this set. Notably,

the “center of the set” indicates the mean value of the samples
in this set. The average distortion of nodleis defined as

Then, the smooth side-match distortion of the codewpid
defined as

D(y) = Uppervd(y) + Uppehd(y). (4)

In the lower triangular region, the neighboring blocks of each El 10 = 5

encoded block are defined to be its right block and its upper D(X) = — (8)



YANG: GTSVQ FOR IMAGE-PROGRESSIVE CODING

where||O; — S|| is the Euclidean distance between vectors
andS.
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tree decodeH 5 based on the values of the “number of
training samples” field.

The algorithm CLUSTERING, described in Section V, iStep 4) Traverse each leaf nodeldg to find the code for this

used to design the general-tree coder with distortion thresholds

as follows. At first, the first stage of CLUSTERING is applied

to the set of whole training samples and a set of connected

components{B;, Ba,...,B,,} is obtained. The distortion

threshold is defined as follows:

node and put this code into the “code” field of the cor-
responding node in the coder trég. The “distortion
level” field of internal nodes are set to 0, adir the
leaf nodes irl’s and Hg. Stop.

The construction of the general-tree coder for pro-

gressive coding, when k distortion thresholds are set as

e =v" max D(B;),

D(the set of whole training samples)
maxi<i<m D(BL)

1<y <

9)

€1 > € > ...
algorithm  General_Tree_Construction_Distor-
tion_Thresholds
one coding level and the corresponding decaolier with the

> ¢, is described as follows. Initially, the

is used to construct the cod&i with

where D (the set of whole training samples) is defined as (8)@lue of coding level ¢ set as 1. To make progressive coding
in this section, and whereis given by the user. After the treePossible, the construction of the coder ttBewith k coding
coder had been constructed, the average distortion of each |e¥€ls and the corresponding Huffman decoding tfég is
node will be less than or equal t implying that the average described herein, given that the codgr_; and the decoder
quantization error will be less than or equaktahen the tree Hx—1. The construction algorithm is presented below.

coder is used to code all the training samples.
The genetic algorithm is then applied {&,, Bs, . ..

,Bm}  Algorithm:

in the second stage of CLUSTERING. The details of the geRrogressive_General_Tree_Construction
eral-tree coder design process are described in the following. Distortion_Thresholds

Input: A general-tree coder

Algorithm:

General_Tree_Construction_Distortion

_Thresholds

Input: A set of training objects
contained in a node B, where each
itself a set of objects. The distortion
threshold ¢ and the coding level c.

OQutput: A general-tree coder Tr, with an av-
erage distortion for each leaf node of less
than or equal to e, and with the Huffman de-
coding tree Hp.

{B1,Ba,.....Bu}

B; is

Step 1) Set nodé3 to the root node of the general-tree coder
Ts. Apply the second stage of CLUSTERING to the
set of training samples contained in the ndéegob-
taining p cluster<, Cs, ..., C,. Each clusteiC; is
designed as a child node of noffein 1'5.

Step 2) For each leaf nodé in the general-tree codéiz, do
the following.

Step 2.1)

If The average distortion of node
Y is greater than €.

Then Set the distortion level
of node Y to 0. Apply the second stage of
CLUSTERING to the set of training samples
contained in the node Y to design the child
nodes of node Y in Tg.

Else Set the distortion level of
node Y to .

Output: A general-tree coder

Tr_1 with k
coding levels and the corresponding Huffman
decoding tree Hj._,. The distortion threshold
e and the coding level k.

T, with average
distortion of each leaf node less than or
equaling to e, and the Huffman decoding tree
H.. T, is capable of progressive coding with
kcoding levels.

Step 1) For each leaf nod€in T}, _; do the following.

Step 1.1) Let the node h¥.
If The average distortion of X is
greater than €k -

Then Apply the algorithm Gen-
eral_Tree_Construction_Distortion_Thresholds
to the node X, given two parameters, the
distortion threshold e, and the coding
level k. The general-tree coder Tx and
corresponding Huffman decoding tree Hx are
then obtained. Let node X in Tr—1 be the root
node of Tx, and let the corresponding node X
in H,_, be the root node of Hx.

Else Set both distortion levels of node
X in Ty-y and Hi_; to k.

Step 2) Stop.

B. Rate Thresholds

This section designs the growing method for the general-tree

coder before describing the designs of the general-tree coder and
the Huffman tree decoder with the rate thresholds. In our ap-
Step 3) (The coder tréEg has been constructed). Take all thgroach, splitting one node at a time grows the general-tree. Let
leaf nodes irl'z to design the corresponding HuffmanS denote the set of leave nodes in the generalfitgiacluding
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nodeX. Let P(X) representthe probability on the training samStep 2) For each nodg in queue®, do the following:
ples in nodeX, and letR(X) denote the bits required to repre- Step 2.1) Apply the second stage of CLUSTERING to the
sent nodeX . They are defined as set of training samples contained in node X, thus
obtaining p clusters’y, Cs, ..., C,.

the number of training samples contained in node X Step 2.2) Design each child nod& of node X, for 1 <

all of the training samples 1 < p, but do not split nodeX in coder treel".
(10) For each nodg;, set the pointer of nod¥; to C;,
fill the size of C; to the field “number of training
samples” and compute the center(gf

P(X) =

R(X) =the number of bits representing the Huffman code

of the node X (11)  step2.3) LetI” denote the coder tree after splitting node
X in T. Use these leaf nodes iff to design a
Fina”y, IetD(T) andR(T) indicate the distortion and rate, re- Huffman decoding treé{’ based on the values of
Spectively, measured W The treel” then indicates the treg the fields “number of training Samp|es”_ Traverse
after nodeX is splitinto nodesX, X», ..., X,, by the second each leaf node aff’ to find the code for this node
stage of CLUSTERING. Then and put this code into the “code” field of the cor-
responding node in coder trg&.
- Z P(i)D(i) + P(X)D(X) (12) Step 2.4) Calculate the value afas in (16) when nod&
pp in the coder tred’ is split to form coder tred”.
X Insert the value oh to the queue)’.
R(T)=>_ P(i)R(i) + P(X)R(X) (13) Step3) Search queu® for the maximum value of, and let
€3 nAode)A( have a maximum value of in Q’. The node
P X and its corresponding are the output.
D(T')=>" P(i)D(i) + > P(X;)D(X;)  (14) Step4) Stop.
i< i=1 Designs of the general-tree coder and the Huffman tree

decoder with the rate thresholds are described as follows. The
R(T') = Z P(i)R(i) + ZP(Xi)R(Xi)~ (15) first stage of CLUSTERING is applied to the set of whole
ics im1 training samples, thus obtaining a set of connected components
X {Bi1, B>, ....,B,}. Then, the second stage of CLUSTERING
Thus, the ratio of the change in distortion to change in rate dife@Pplied tO{BlvB2 ------ , B} to construct the general-tree
to splitting leaf node X, is defined as coder and the Huffman tree decoder with the rate thresholds.
Before designing the general-tree coder, the user must give a
rate threshold for the general-tree coder. The general-tree is

A= — D(1") — D(T) grown one node at a time. The growing process continues until
R(T") = R(T) the average rate of the general-tree reaches the rate threshold.
P(X)D(X) — i P(X:)D(X;) The algorithm for designing the general-tree coder and the
_ i;l (16) Huffman-tree decoder with rate thresholds is as follows.
P(X)R(X) - le(Xi)R(Xi)
Algorithm:
The design of the growing method is to select the node Wity aral Tree_Construction_Rate_Thresholds
the largest\ to be split at a time in general-tree codér The Input: A set of training objects (Bi.Ba,....Bn}
process of growing algorithi@ind_Split_Node isdetailed i contained in a node B. where each B, is
as follows. itself a set of objects. The rate threshold
R. and the coding level c.
Algorithm: Find_Split_Node Output: A general-tree coder Tp with an av-
. erage rate of less than or equal to R. and
Input: A general-tree coder ) T. the Huffman tree decoder Hy
Output: A splitting node X in the coder tree '
T and the value of X for node X.
Step 1) Set node B as the root node of tige Set Rate= 0.
Step 1) Set queued andQ’ to be empty. Step 2) while The value of Rate is smaller thdz)..
Step 2.1) Apply the algorithrRind_Split_Node to the
treeTs. Let nodeX denote the node to be splitin
If Only one node, namely the root node, T, then splitnodeX in the coder tre@’s to con-
exists in the coder tree T. struct a new coder treEj;. Use all the leaf nodes
Then Put the root node to the queue Q. of the general-tree codét; to construct the cor-
Else Put all of the leaf nodes of coder responding Huffman tree decodgl;. Traverse

tree T to the queue Q. each leaf node aff;; to find the code and put this



YANG: GTSVQ FOR IMAGE-PROGRESSIVE CODING

197

code into the “code” field of the correspondingStep 2) while The value of Rate is smaller thdgy,.

node in the coder tre€y;.
Step 2.2) Rate= R(Tj), where R(Ty) is defined as in
(15). SetTy = Ty andHp = Hy.
Step 3) Apply the algorithnrind_Split_Node to the tree
Tg. Let nodeX denote the node to be splitiy, then

split nodeX in the coder tred’z to construct a new
coder treel’;;. Use all the leaf nodes of the general-tree

Step 2.1) Set the queug to be empty.
Step 2.2) For each trefx,, for 1 < i < ¢, do the fol-
lowing.

Step 2.2.1) Apply the algorithm Find_Split_Node to
the treeT'y,. Let nodeX’ be the node to be
splitin T'x,. Insert the corresponding value
of X for nodeX’ into queueR)’.

coderT;; to construct the corresponding Huffman tree Step 2.3) Search que(g for the maximum value of. Let

decoderH ;. Traverse each leaf node &f}; to find

the code and put this code into the “code” field of the

corresponding node in the coder trEg.

Step 4) Rate= R(Tj), whereR(T}) is defined as in (15). Set

Tg = T,B andHB = H/B
Step 5) Apply the algorithrirind_Split_Node to the tree
Tg. Let nodeX denote the node to be splitis, then

split nodeX in the coder tred’sz to construct a new
coder tredl’;;. Use all the leaf nodes of the general-tree

the nodeX have a maximum value ofin Q’, and
let nodeX be contained in tre®x, . Split nodeX
in the coder tre@’x, to construct a new coder tree
1%, . Allthe leaf nodes of coder trek;, are used
to construct the corresponding Huffman decoder
tree Y, . R

Step 2.4) LetAR be the increased rate when the nodés
splitin coder tred’x, to form the coder treg’, .
SetAR = R(1%,) — R(Tx,).

coderT} to construct the corresponding Huffman tree Step 2.5) Rate= Rate+ AR. SetTx, = T, andHx, =

decoderH;. Traverse each leaf node éf}; to find

the code and put this code into the “code” field of th&tep 3) Set thekdistortion levels at 0 and k for the internal and

corresponding node in the coder trEg.

leaf nodes inl’x,, respectively, fon < i < g.

Step 6) Rate= R(Tj), whereR(T}) is defined as in (15). Set Step 4) Set each leaf nodg in T),_; as the root node df’y;,

T = T,B andHg = H/B

Step 7) Set the distortion levels at 0 and c for the internal and

leaf nodes irll's, respectively.

Step 8) Output coder tréEg and corresponding decoder tree

Hpg. Stop.

and set the corresponding nodlgin H,_, as the root
node ofHy,, for1 < i < q.

Step 5) Outputthe coder trédg and the corresponding decoder
tree Hy,. Stop.

This paper describes how to construct the general-tree
coder for progressive coding, whénrate thresholds are set

asR; < Ry < ...
General_Tree_Construction_Rate_Thresholds

is used to construct the cod&i with one coding level and

the corresponding decodéf;, given a coding levet of 1 and
a rate threshold of?;.The construction of the coder tr&g

with kcoding levels and the corresponding Huffman decodirfﬂ

tree H;, is then described, given that the codgr_; and the
decoderH;._,. The construction algorithm is presented belo

Algorithm:
Progressive_General_Tree_Construction_Rate_
Thresholds

Input: A general-tree coder Tp—1 with k-1
coding levels and the corresponding Huffman
decoding tree Hy_1. The rate threshold
and the coding level k.

Output: A general-tree coder T, with an av-
erage rate of less than or equal to Ry and
the Huffman decoding tree H,. T, is capable
of progressive coding with k coding levels.

Ry

Step 1) Let there be g leave nodgs,, X, ..., Xy, in Tj_;.
Set each nod«; to be the root node of tregx,, for
1 <4< gq.SetRate= R(T}—,) andR(Tx,) = 0, for
1 <1<4g.

< Ry, as follows. First, the algorithm

IV. DESIGN OF THEGTSVQ

This section describes the design of GTSVQ. [17]-[19] used
discrete cosine transform (DCT) coefficients as the edge ori-
ented features. However, in GTSVQ, all training images were
jvided into blocks of size 4x 4, and each block was then
transformed into the DCT coefficients by DCT. Six DCT co-

wefficients were sufficient to serve as clustering features, where

¢(0, i)'s represent the horizontal features and c(i, 0)'s denote
the vertical features fot < ¢ < 3. The CLUSTERING al-
gorithm is used to construct the general-tree coder and corre-
sponding Huffman tree decoder. However, the codeword con-
tained in each leaf node in the Huffman tree decoder takes the
form of the DCT coefficients. To make it possible to apply the
smooth-side match method in the decoding phase, the inversed
DCT (IDCT) was used to transform the DCT coefficientsin each
leaf node into a spatial vector, with this spatial vector repre-
senting the codewords. The smooth side-match distortions of
the codewords can then be calculated in the decoder, and the
codeword with the smallest smooth side-match distortion is the
decoding result. Fig. 2 presents an example illustrating the en-
coder and the decoder. The encoder feis employed in Fig. 2
to perform progressive coding with three coding levels, meaning
three codes are obtained when a block is encoded, one for each
coding level.

The image coding process for GTSVQ will be described next.
Initially, all the diagonal blocks, those from the left-upper block
to the right-lower block in an image, are encoded directly using
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O tion amongC1q, C1g, C17, andCyg is the decoding result. The
second coding level requires further steps, because the coding
level of this nodeC (which is 2) is greater than the distor-
tion level (which is 1). Distancefg — C1o|| and ||q — Cuy ||

are computed. Supposges nearer toCo; then, since the dis-
tortion level of this node is 2, the process stops, and code 0 is
Gosil213  sent to the Huffman decoding tree. Similarly, nadg is ob-
tained when code 0 is received by decofgr Also, the smooth
side-match distortions for all of the leaf nodes contained in the
subtree rooted at node,, are calculated, namely, 4, C17 and

C1s, and that with the smallest smooth side-match distortion is
the decoding result in the second coding level. Furthermore, in
the third coding level, because the coding level of this nGde
(which is 3) is greater than the distortion level (which is 2), fur-
ther steps are required. Consequently, the distajhcesCi¢||,

llg — Ci7]l, and||q — Cys|| must be calculated. Suppose q is
nearest taC;7, the code 01 contained in node; is sent to

the decodel{;. Because the coding level (which is 3) is now
no greater than the distortion level of na@g; (which is 3), the
coding process is stopped. Finally, the codew®@rgdis obtained

in Hs. Clearly, the smooth side-match method need not be used
at the third coding level.

However, the distortion level of nodg; in T3 is 2, meaning
that if nodeCs is used to encode some block in the first coding
level, it can also be used to encode this block in the second
coding level. Thus, the coder does not send any code for this
block to the decoder in the second coding level until the third
coding level begins. In the second coding level, the decalier
only needs to calculate the smooth side-match distortions of two
nodesC, andC3 and outputs the better one as the decoding
result.

Notably, in the case of a single coding level, the Huffman tree
decoder achieves the optimal Huffman codes. In the progres-
sive coding case, the Huffman tree decoder does not achieve the

(3.6,10100,20) (1G5 1071558

Gl G optimal Huffman codes, since the Huffman tree decoder is the

(®) combination of several Huffman trees. That is, the partial codes

Fig. 2. Example of the coder tré& and the Huffman decoding tréé;. (a)  sent from the coder to the decoder for each coding level are op-
The coder treds; (b) The Huffman decoding treH. timal Huffman codes. However, the total of bit rate received in

. . the decoder is clearly not optimal.
all of the codewords contained in the leave nodes of the gen- y P

eral-tree codefls, and are then decoded using the Huffman
tree decodeH ;. After the diagonal blocks are coded, the other
blocks are progressively encoded. Meanwhile, coding a vector
qusing the coder tre#; with three coding levels involves the The CLUSTERING algorithm uses the genetic strategy to au-
following steps. In the first coding level, the distannﬁq& o || tomatically search for the proper number of clusters and find a
|lg = C1||, and||q — C3]| are computed. Supposgeis nearest good clustering. The algorithm CLUSTERING consists of two

to 4, check the value of the distortion level. If the distortiorstages. The first stage is the nearest neighbor (NN) algorithm
level equals zero, further steps are required. Then, the distanf&). The distance used to group objects in the NN algorithm is
llg — Cull, llg = Csl|, and|lg — Cs|| are calculated. Supposebased on the average of the nearest neighbor distances. Mean-
qis closest toC’s, since the distortion level of this nodg; is  while, the second stage consists of a heuristic method and a ge-
1, the process is stopped and the code 1011 contain€g is netic algorithm. The heuristic method is used to identify a good
sent to the Huffman decoding tree. In the Huffman tree decodelustering by applying the genetic algorithm [21].

two steps are required to determine the decoding result. FirstThe design of the codebook denotes each training block
the decoder treéi; is traversed according to code 1011 andiith a size of 4x 4 as an object in the CLUSTERING algo-
then node”’; is obtained in{3. Second, the smooth side-matchithm. Let there ben objects,0,,0-,...,0,,, and suppose
distortions are calculated for all of the leaf nodes containgldat each object is characterized bpyfeature values, then

in the subtree rooted at nod#&;, namelyCi1, Cig, Ci7, and O; = (0i1,0:2,....,0ip) € RP. The first stage of CLUS-

C1s. The codeword with the smallest smooth side-match distofERING, that is, the NN algorithm, is described below.

V. THE GENETIC CLUSTERING ALGORITHM
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Step 1) For each objeci;, find the distance between,; and between the center of the takdp; and each centef; is

its nearest neighbor. That is calculated. Then we have
dxx(04) = min [|0; = Oil], wherg|0; — O] B;  Cj, if [[Vi = Sill < |IVi—Skll, for 1<k <s. (20)
JF
» 1 If B, is included in clusteC;, the centerS; and the size of
— (Z(OM _ Oiq)2> (17) cClusterC; are recomputed as follows whéh is added ta”;
q=1 S;1Cs| + Vil Bi
s = ST oo m e
Step 2) Computd,,, the average of the nearest neighbor dis- |Cj|+ |Bil
tances, as follows: Afterthe B;’s in { By, B, ... .. B,,} — T have all been consid-
ered, the clustef’; with centerS] generated by the sedd for
Z dxx(0;).Let d = udyy. (18) j=1,2,...,sis obtalned{Cl Cs,...,C,} is defined as the

set of clusters generated by this strlng

Step 3) View then objects as nodes of a graph, and compuReproduction Phase

the adjacency matrid;. . as follows: Let C; be one of the clusters generated by strtgrhe fol-

o 1, if]jo;,— 0] <d lowing definesD;,.» as the intra-distance in the clustér and
A(i,§) = { 0’ othelrwise = (19) definesD;,., as the inter-distance betweéhand the set of all
’ other clusters
wherel < j <i < n. .
Step 4) Find the connected components of this graph, and let Dinera(Cs) = Z Vi — Silll B (22)
them be denoted bi;, B, ..., B,,.. BiCCi
[21] showed that the value of u may be chosen from the in- Dinter(Ci) = Z <min Vi — 5j||> | B| (23)
terval [1.4, 1.8], and that the exact value is not critical to the Boce, \7
clustering result. Herein, u is set at 1.5. For the genetic algo-
rithm, the initial data set contains m small sBts Bs, . .., B, where the summation is over @,'s that are in cluste€;. The

where the center of each 8t is denoted by for 1 < i < m. fitness function of a stringzcan then be defined as follows:

Clgarly,m is smaller than the o_rlgm_al data_ set, Whlc_thsThe Fitnes¢R) = Z Dinter (C)w — Dingea(Ch) (24)

objective of using the NN algorithm in the first stage is to reduce

computational time and space during the second stage. Hengiere the summation is over all clustéfsgenerated by string

the genetic algorithm in the second stage can process large datandw denotes a weighting factor. If w is assigned a small

sets eﬁ‘ICIentl_y. _ _ - value, the importance dP;:..(C;) is emphasized, which tends
The genetic algorithm consists of an initialization step and produce more numerous and compact clusters. Meanwhile, if

the iterative generations with three phases, namely the repigis assigned a large value, the importanc®gf,...(C;) is em-

duction, crossover and mutation phases. They are describeglagsized, which tends to produce fewer and looser clusters than

follows. if w is small. After the calculation of the fitness of each string in
o the population, the reproduction operator is implemented using
Initialization Step a roulette wheel with slots sized according to fitness.

Let N be the population size in the genetic algorithm. A In the codebook design, the center of each cluster generated

population of N binary strings is randomly generated. Th®Y the string with the highest fitness represents the codeword,

length of each string is:, which is the number of sets obtainedsince the string with the highest fitness represents a better clus-

in the first stage.N binary strings are generated in such #ering in the set of training objects.

way that the number of 1's in the strings is almost uniformlérossover Phase

distributed within [1,m]. Meanwhile, each string represents

subset of{ By, B, ..., B,,}. If B; is in this subset, théth If a pair of stringsk and () are chosen for applying the

position of the string will be 1; otherwise, it will be 0. Eagh  crossover operator, two random numbgrandg in [1,m] are

in the subset is used as a seed to generate a cluster. generated to decide which pieces of the strings are to be inter-
Before describing the three phases, the method of geWanged. Suppoge < g, then the bits from positiop to po-

erating a clustering from the seeds is described. Ls&ition g of string R will be interchanged with those bits in the

T = {Ty,T»,...,T.} be the subset corresponding to &ame positions of strin@. For each chosen pair of strings, the
string, initial clusters”; beT; fori = 1,2,...,s. Furthermore, crossover operator is done with probability The significance
let the initial centersS; of clustersC; beV; fori = 1,2,...,s ofthe crossover phase in codebook design lies in performing the
and let the size of clustef; be defined agC;| = |T;| for interchange of the codewords contained in various strings.
i = 1,2,...,s, where|T;| denotes the number of objects
belonging to the Sef;. Mutation Phase

Clusters are generated as follows. Th&;'s in During the mutation phase, the bits of the strings in the pop-

{B1,B,,...., B,,} — T are taken one by one and the distancelation are chosen with probabilipy,,. Each chosen bit is then
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TABLE | TABLE I
COMPARISON OF THEVARIOUS METHODS FOR THECODED IMAGE “L ENA” PERCENTAGES TOWHICH THAT THE SEARCHED CODEWORDS INFOUR
CODING LEVELS ARE THE SAME AS THAT OF THE FIFTH CODING LEVEL IN
Coding levels | THE GTSVQ[SVOOTH]
Methods [O) @ G) @ 6)
PSNR| Rate [PSNR| Rate |PSNR| Rate [PSNR| Rate [PSNR| Rate P o,
(dB) | (bpp) | (dB) | (bpp) | (dB) | (bpp) | (dB) | (bpp) | (dB) | (bpp) Images crcentages (%)
VLTSVQ 24.8 [0.263] 26.0 [0.322( 27.9 |0.380| 30.2 [0.445| 32.9 {0.518 @ (2) (3) 4 ®)
VLTSVQ[Side] 29.3 |0.264] 30.8 [0.323] 31.70.382] 32.5 [0.446] 32.9 [0.519 Lena 812 89.5 95.3 98.8 100
VLTSVQ[Smooth] 30.0 [0.264] 31.310.323 32.2 |0.382 32.6 |0.446| 32.9 |0.519 F-16 786 86.2 94.3 97.2 100
Boat 82.2 90.8 96.2 99.1 100
PTSVQ 248 (0263 26.1 [0.322] 27.9 [0.380| 30.1 |0.445| 32.7 [0.518
PTSVQ[Side] 291 |0.264 30.5 [0.323] 31.5 [0.382{ 32.3 |0.446] 32.7 [0.519
PTSVQ[Smooth] 30.0 |0.264| 31.10.323] 32.0 [0.382] 32.5 [0.446] 32.7 |0.519
BTSVQ 24.5 |0.268] 25.8 [0.325) 27.7 |0.382| 29.9 [0.448] 325 [0.521  coding is also used to design the codes in the TSVQ(M)s,
BTSVQ[Side] 28.8 10.269| 30.3 |0.326] 31.2 |0.383) 32.0 0449/ 32.5 0.522 a5 considered in GTSVQ. To compare the various methods
BTSVQ[Smooth] 29.5 10.269] 30.7 |0.326| 31.6 [0.383| 32.2 [0.449| 32.5 |0.522 ||Sted |n Table |, each Coder |S des|gned usn’]g the same
z;:zgm;{s_d] 25210197/ 27:2 0.263] 29.2 [0.334] 31.9 |0.387 3.1 10454 gtryctyre. The CLUSTERING algorithm was first used to
1de . - . .
316 10.198 329 10264339 10.3351 34.7 0.3881 35.1 0455 yesign the general-tree coder with five coding levels, and
VLTSVQ(M)[Smooth] 32.8 0.198] 33.7 [0.264] 34.3 |0.335( 34.8 [0.388] 35.1 |0.455 th th th TSV lied telv t btai
PTSVQM) 25.10.197] 27.0 |0-263| 29.1 |0.334| 31.8 |0.387| 35.1 |0.454 en these . ree Qs were applie Se_para ely 1o o _am
PTSVQ(M)[Side] 31,5 J0.198] 32.8 [0264] 33.7 [0335] 346 [o388| 5.1 joass L€ Same size for each codebook by using the clustering
PTSVQ(M)[Smooth] 32.8 10.198] 33.5 |0.264 342 |0.335| 34.8 [0.388] 35.1 loass  algorithm LBG. The numbers of codewords for the five
BTSVQM) 24.8 (0.197) 26.4 |0.263| 28.1 [0334) 312 |0.387| 34,8 0454  coding levels listed in Table | are 23, 58, 78, 171, and
BTSVQMM)[Side] 31.2 (0.198| 32.4 [0.264| 33.4 |0.335| 34.2 |0.388| 34.8 [0.455 302, GTSVQ[VQ] indicates the coding result by searching
BTSVQ(M)[Smooth] © 132.4]0.198 33.1 |0.264] 33.9 |0.335| 34.5 |0.388 34.8 |0.455 the whole leaf nodes in the generaj-tree coder. Meanwh"e,
GTSVQ[V 28.7 [0.375) 30.4 [0.4 5 0. 310, . s :

Vel 26.7 10312 204104311323 0488 363 056 GTSVQ[Without] indicates the coding result of GTSVQ
CTVOILBS) 232 0197273 0263, 29,3 [0.334) 2.1 038755 [94%  Wwithout using the smooth side-match method in the decoder
GTSVQ[Without] 25.8 [0.197] 28.5 [0.263| 31.1 [0.334{ 33.2 |0.387 36.1 [0.454 g X ) L
GTSVQ[Side] 33.0 [0.198| 34.1 {0.264 35.1 |0.335( 35.7 {0.388] 36.1 |0.454 Thus, the 'second step in the d?COder could be omitted in
GTSVQ[Smooth] 343 (0,198 34.9 |0.264] 35.5 |0.335] 35.8 |0.388| 36.1 [0.as¢ G TSVQ[Without]. The GTSVQ[Side] and GTSVQ[Smooth]

show the coding results of the GTSVQ using the conventional

side-match method and the smooth side-match method, re-
. spectively, in the second step of the decoder. However, these

changed from 0 to 1 or from 1 to 0, with a chosen cluster th(}’l’gu)ree TSVQ's can use the smooth side-match method in the

being discarded or produced in a string. Meanwhile, a code- . .
word can be produced in codebook design by changing the ctg?—COder just as the GTSVQ[Smooth]. For example, the coding

: X ; ) uality of the “Lena” image encoded by VLTSVQ[Smooth]
;ez%%?glngitb#;:ﬁ? t% t(()) (jlu?i;dliﬁgrﬂi?a?ﬁl) r(]:harl]r;gslgg the COrrgnd VLTSVQ(M)[Smooth] in Table | is better than that en-
P 9 9 P ' coded by VLTSVQ and VLTSVQ(M), respectively. Further-

more, the coding quality of GTSVQ[Smooth] is better than
VI. EXPERIMENTS that of VLTSVQ(M)[Smooth] encoded, because the CLUS-
The parameters used in the genetic algorithm in the expeFERING algorithm can search the proper number of child
ments are as follows, namely a population size of 50, a crossomedes when splitting a node in the coder tree. Notably, in
rate of 80%, and a mutation rate of 5%. One hundred generatidiable |, the coding quality of the “Lena” image encoded
were run and the best solution was retained. The parameteby GTSVQ[Smooth] is 34.3 dB at 0.198 bpp in the first
had a value withir3, 5], obtaining the number of branches beeoding level and 36.1 dB at 0.454 bpp in the fifth coding
tween 2 and 20 when each node is split. Meanwhilejas set level. That is, the PSNR gain from doubling the coding rate
to 1.5 in the first stage of CLUSTERING. In [3], it was showrat 0.198 bpp is within 2 dB. This phenomenon occurs be-
that the values of, andw were not critical. cause the codeword encoded for each input block in the
Five 512 x 512 (pixels) images with 256 gray levels werdirst coding level is usually the same as the codeword en-
employed as the training images, and were divided into4 coded in the fifth coding level, when the smooth side-match
blocks to construct the general-tree coder and correspondimgthod is used in the decoder of GTSVQ[Smooth] to search
Huffman tree decoder. Table | compares the proposed metHod the codeword with the smallest smooth side-match dis-
with the other three methods. Three other methods, Balakottion as the decoding result. Therefore, the PSNR is en-
ishnan’s method [8], Chou’s method [6], and the balancdwnced in GTSVQ[Smooth] when the bit rate is low. Table I
binary-tree VQ were implemented for purposes of compdists the percentages to which that the codewords encoded
ison with the proposed method. These three methods wéve each coding level are the same as that of the fifth
termed VLTSVQ, PTSVQ, and BTSVQ. In PTSVQ, the treeoding level in GTSVQ[Smooth]. Meanwhile, Fig. 3 com-
was grown to a height of 11 before pruning. Also, thesgares the coding quality of the various methods, and reveals
three TSVQs are easily designed using the M-ary tredbat GTSVQ[Smooth] has better coding quality than other
namely VLTSVQ(M), PTSVQ(M), and BTSVQ(M), where coding methods. Three reasons for this phenomenon exist.
M denotes the average number of children of a node FKirst, the algorithm CLUSTERING searches clusters more
the general-tree coder designed by GTSVQ. In Table |, Bffectively than the algorithm LBG. GTSVQ[LBG] uses the
is set to five for these three TSVQ(M)s, and the HuffmahGB algorithm to design the general-tree coder as the same
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Fig. 3. Comparison of coding performance by the various coding methods. (a) Coding quality of the “Lena” image. (b) Coding quality of the “F-1€)image.
Coding quality of the “Boat” image.

structure of GTSVQ[Without]. GTSVQ[Without] achieves
higher PSNR in its coding quality than the GTSVQ[LBG].
Second, the decoder of GTSVQ[Smooth] uses the smoott
side-match method in the second step to select a codewor
with the smallest side-match distortion as the decoding re-
sult, thus achieving a better solution than only using first
step in the decoder of GTSVQ[Smooth], as GTSVQ[Without]
does. That is, when the bit rate is low, Fig. 4(a) and
4(b) display the coding results by using GTSVQ[Without]
and GTSVQ[Smooth], respectively, when the first coding
level is finished. Fig. 4 reveals that coding quality is en-
hanced when the smooth side-match method is used in
GTSVQ[Smooth]. Third, GTSVQ generally achieves a higher
search rate than conventional TSVQs based on a binary tree
structure. Table Ill lists the search rates of the various coding
methods, with search rate indicating the percentage to which
that the searched codeword is the same as that of the full
search. In the genetic algorithm, if is small, the genetic
algorithm tends to produce more clusters and the general tree
widens, meaning that search time lengthens but PSNR tends
to increase. Meanwhile, ifv is large, the algorithm tends to

produce fewer clusters and the general-tree will be narrower,

: : : : : . 4. “Lena” image encoded by using the methods GTSVQ(Without) and
meaning that searching time is reduced but so too is PS'\EgSVQ(Smooth). (a) Image encoded by the method GTSVQ(Without) (25.8

The general-tree vector quantizer is, therefore, something lg;0.197 bpp). (b) Image encoded by the method GTSVQ(Smooth) (34.3 dB,
tween two extremes, the binary tree vector quantizer and th&98 bpp). (c) Original “Lena” image.

(@ (b)
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SEARCH RATE OF THE COMPARISON OF OURMETHOD AND THE
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TABLE Il

OTHER METHODS

Search rates(%)

Methods

@ 2 3) 4) ®)
VLTSVQ 98.5 96.4 94.1 91.9 89.2
PTSVQ 98.4 96.3 94.0 91.7 89.0
BTSVQ 98.2 96.0 93.8 91.4 88.5
VLTSVQ(M) 99.6 98.8 98.1 97.2 96.4
PTSVQ(M) 99.6 98.8 98.1 97.1 96.3
BTSVQ(M) 99.4 98.6 97.7 96.7 95.8
GTSVQ(Without) 99.8 99.1 98.5 97.8 97.2

(2]

(3]
(4]

(3]
(6]

(71

full search vector quantizer. Consequently, the search rate ofg]

the proposed method exceeds that of conventional TSVQs.

VIl. CONCLUSIONS

(9]

(20]

TSVQ has the advantage of more efficient codebook searches

than traditional full-search vector quantizers. However, it is[11]
improper to always divide a set of training samples into a
fixed number of clusters in TSVQ. This generally causes an; o

increase in either the bit rate, or the average distortion, or both.

A general-tree-structured vector quantizer is proposed hereifi3]
The CLUSTERING algorithm is used to divide a set of training, ,

samples into several natural clusters in accordance to the char-

acteristics of the training data set. Following the construction of
the general-tree coder, the Huffman coding is used to optimiz[a1L5

the bit rate. Progressive coding can also be achieved by using
the method designed herein. Moreover, the smooth side-matc¢tf]

method is presented in this paper. Combining the Huffman

tree decoder and the smooth side-match method to select the)

codewords in the decoder yields good coding quality at a lower

bit rate. As evidenced by the experimental results, the proposeg,
method achieves a higher PSNR and lower average bit rate than
other methods when applied to the same data set.
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