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Abstract

In solving clustering problem, traditional methods, for example, the K-means algorithm and its variants, usually ask
the user to provide the number of clusters. Unfortunately, the number of clusters in general is unknown to the user. The
traditional neighborhood clustering algorithm usually needs the user to provide a distance d for the clustering. This d is
di$cult to decide because some clusters may be compact but others may be loose. In this paper, we propose a genetic
clustering algorithm for clustering the data whose clusters are not of spherical shape. It can automatically cluster the data
according to the similarities and automatically "nd the proper number of clusters. The experimental results are given to
illustrate the e!ectiveness of the genetic algorithm. ( 2000 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The clustering problem is de"ned as the problem of
classifying a collection of objects into a set of natural
clusters without any a prior knowledge. For years, many
clustering methods were proposed by many researchers,
for example, see Refs. [1}6]. These methods can be basi-
cally classi"ed into two categories: hierarchical and non-
hierarchical. The hierarchical methods can be further
divided into the agglomerative methods and the divisive
methods. The agglomerative methods merge together the
most similar clusters at each level and the merged clusters
will remain in the same cluster at all higher levels. In the
divisive methods, initially the set of all objects is viewed
as a cluster and at each level, some clusters are bi-
nary divided into smaller clusters. There are also many
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non-hierarchical methods. Among them, the K-means
algorithm is an important one. It is an iterative hill-
climbing algorithm and the solution obtained depends
on the initial clustering. Although the K-means algo-
rithm had been applied to many practical clustering
problems successfully, it is shown in Ref. [7] that the
algorithm may fail to converge to a local minimum under
certain conditions. In Ref. [8], a branch and bound
algorithm was proposed to "nd the globally optimum
clustering. However, it might take much computation
time. In Refs. [9,10], simulated annealing algorithms for
the clustering problem were proposed. These algorithms
may "nd a globally optimum solution under some condi-
tions. Most of these clustering algorithms require the
user to provide the number of clusters as an input. But
the user in general has no idea about the number of
clusters. Hence, the user is forced to try di!erent numbers
of clusters when using these clustering algorithms. This is
tedious and the clustering result may be no good espe-
cially when the number of clusters is large and not easy to
guess. The K-means algorithm is not suitable for cluster-
ing the data whose clusters are not of spherical shape.
In Ref. [11], a neighborhood clustering algorithm based
on the mean distance from an object to its nearest
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neighbor was proposed. It can cluster this kind of data.
But just like other neighborhood clustering methods, the
threshold of distance for grouping objects together is
di$cult to decide. Some papers, for example, Refs.
[12,13] had been devoted to this topic.

In this paper, we propose a genetic clustering algo-
rithm for the data whose clusters may not be of spherical
shape. Since genetic algorithm is good at searching, the
clustering algorithm will automatically "nd the proper
cluster number and classify the objects into these clusters
at the same time.

The remaining part of the paper is organized as fol-
lows. In Section 2, the basic concept of the genetic ap-
proach is introduced. In Section 3, the genetic clustering
algorithm for the data whose clusters may not be of
spherical shape is described. The experimental results are
given in Section 4 and we conclude the paper in Section 5.

2. The basic concept of the genetic strategy

The genetic strategy consists of an initialization step
and the iterative generations. In each generation, there
are three phases, namely, the reproduction phase, the
crossover phase and the mutation phase. In the initializa-
tion step, a set of strings will be randomly generated. This
set of strings is called the population. Each string consists
of 0's and 1's. The meanings of the strings in the algo-
rithm will be described in Section 3. After the initializa-
tion step, there is an iteration of generations. The user
may specify the number of generations that he/she wants
the genetic algorithm to run. After each generation, a set
of strings with better "tness will be obtained and a clus-
tering will thus be derived. The genetic algorithm will run
the speci"ed number of generations and retain the best
clustering. The three phases in each generation are intro-
duced in the following.

In the reproduction phase, the "tness of each string is
calculated. The calculation of the "tness is the most
important part of our algorithm. After the calculation
of the "tness for each string in the population, the re-
production operator is implemented by using a roulette
wheel with slots sized according to "tness. In the
crossover phase, strings are chosen by pairs. For each
chosen pair, two random numbers are generated to deci-
de which pieces of the strings are to be interchanged.
Suppose the length of the string is n, each random num-
ber is an integer in [1, n]. For example, if two random
numbers are 2 and 5, position 2 to position 5 of this pair
of strings are interchanged. For each chosen pair of
strings, the crossover operator is applied by probability
p
c
. In the mutation phase, bits of the strings in the

population will be chosen with probability p
m
. Each

chosen bit will be changed from 0 to 1 or from 1 to 0. In
our experiments, we choose p

c
and p

m
to be 0.8 and 0.1

respectively.

3. The genetic clustering algorithm for data with
non-spherical-shape clusters

There are data whose clusters are not of spherical
shape. Some examples are given in Figs. 1}3. In this
section, we describe a genetic clustering algorithm
CLUSTERING for these kinds of data. Let there be
n objects, O

1
, O

2
,2, O

n
. The algorithm CLUSTERING

consists of two stages. The "rst stage consists of the
following steps.

Step 1: For each object O
i
, "nd the distance between

O
i
and its nearest neighbor. That is,

d
NN

(O
i
)"min

jEi

DDO
j
!O

i
DD,

where DDO
j
!O

i
DD"A

p
+
q/1

(O
jq
!O

iq
)2B

1@2
.

Step 2: Compute d
av
, the average of the nearest neigh-

bor distances, as follows.

d
av
"

1

n

n
+
i/1

d
NN

(O
i
). Let d"uHd

av
.

(d is decided by the parameter u and u is empirically
chosen to be 1.5.)

Step 3: View the n objects as nodes of a graph. Com-
pute the adjacency matrix A

nCn
as follows.

A(i, j)"G
1 if DDO

i
!O

j
DDd,

0 otherwise,

where 1)j)i)n.
Step 4: Find the connected components of this graph.

Let these connected components be denoted by C
1
,

C
2
,2, C

m
.

The connected components C
1
, C

2
,2, C

m
obtained in

the "rst stage will be taken as the initial clusters in the
second stage. Basically, the second stage is a genetic
algorithm, which will merge some of these C

i
's if they are

close enough to one another. We de"ne the distance
matrix D

mCm
to specify the distance between each pair of

clusters C
i
and C

j
.

D(i, j)" min
Or|Ci, Os|Cj

DDO
r
!O

s
DD.

The initialization step and the three phases of each gen-
eration of this genetic algorithm are described in the
following.

Initialization step: A population of N strings is ran-
domly generated. In our experiments, N is equal to 50.
The length of each string is m, which is the number of the
initial clusters obtained in the "rst stage. Each string
represents a subset of MC

1
, C

2
,2, C

m
N. If C

i
is in this

subset, the ith position of the string is 1; otherwise, it is 0.
For example, suppose string R

1
represents the subset
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Fig. 1. The "rst set of test data and the clustering results. (a) The original test data. (b) The test data with noises removed. (c) 8 clusters.
(d) 7 clusters. (e) 6 clusters. (f) 5 clusters. (g) 4 clusters. (h) 3 clusters. (i) 2 clusters. (j) 4 clusters obtained by applying the genetic algorithm
to the test data. (k) 4 clusters obtained by applying K-means algorithm.
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Fig. 1. (Continued.)

MC
1
, C

2
, C

3
N and string R

2
represents the subset

MC
1
, C

3
, C

4
N, then R

1
is 1110020 and R

2
is 1011020.

For each string R
i
in the population, two sets ;

i
and

;@
i
are de"ned as follows:

;
i
"M j DThe jth bit of R

i
is 1N,

;@
i
"M j DThe jth bit of R

i
is 0N.

That is, ;
i
contains those indices at which R

i
has bit

1 and ;@
i
contains those indices at which R

i
has bit 0.

These two sets are used to de"ne the intra-distance
D

*/53!
and the inter-distance D

*/5%3
in the following. Each

string R
i

represents a subset of MC
1
, C

2
,2, C

m
N. We

de"ne D
*/53!

to represent the intra-distance among the
clusters in this subset. We also de"ne D

*/5%3
to represent
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Fig. 2. The second set of test data and the clustering results. (a) The original test data. (b) 4 clusters. (c) 3 clusters. (d) 2 clusters.

the inter-distance between this subset and the set of all
other clusters not in this subset.

D
*/53!

(R
i
)"max

j|Ui

min
k|Ui

kEj

D( j, k),

D
*/5%3

(R
i
)"min

j|Ui

k|U{i

D( j, k),

If R
i
contains only 0's, both D

*/53!
(R

i
) and D

*/5%3
(R

i
) are

de"ned to be 0. If R
i
contains only one 1, both D

*/53!
(R

i
)

and D
*/5%3

(R
i
) are de"ned to be 0. Some explanations may

be helpful in understanding the de"nitions of D
*/53!

(R
i
)

and D
*/5%3

(R
i
). Suppose R

i
represents MC

1
, C

2
, C

3
N which

is a subset of MC
1
, C

2
,2, C

m
N, for each C

j
, there must be

a C
k
that is nearest to C

j
in the subset. Suppose Fig. 4(a)

indicates these three clusters C
1
, C

2
and C

3
, the nearest

clusters to C
1
, C

2
and C

3
are C

2
, C

1
and C

2
respectively.

For each pair of nearest clusters, there is a distance and
D

*/53!
is just the maximum of all these distances. In

Fig. 4(a), D
*/53!

(R
i
) is D(2, 3). Therefore, D

*/53!
(R

i
) is used

to measure the nearness of the clusters in the subset
represented by R

i
. As indicated in Fig. 4(b), suppose the

clusters that are outside this subset and nearest to C
1
, C

2
and C

3
are C

7
, C

4
and C

5
respectively. Then, D

*/5%3
(R

i
) is
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Fig. 3. The third set of test data and the clustering result. (a) The third set of test data. (b) The clustering result.

Fig. 4. An example to illustrate the de"nitions of D
*/53!

and
D

*/5%3
.

de"ned to be the smallest one of these three distances,
that is, D(3, 5). So D

*/5%3
(R

i
) is used to measure the degree

of separation among the subset represented by R
i
and

other clusters.
Reproduction phase: The "tness of the string R

i
is

de"ned as follows:

SCORE(R
i
)"D

*/5%3
(R

i
)Hw!D

*/53!
(R

i
),

where w is a weight. If the value of w is small, we
emphasize the importance of D

*/53!
(R

i
). That is, only clus-

ters very near to one another are merged. This tends to
produce more clusters and each cluster tends to be com-

pact. If the value of w is chosen to be large, we emphasize
the importance of D

*/5%3
(R

i
). That is, clusters not very near

to one another may be merged in order to make the
distances among the merged ones larger. This tends to
produce lesser clusters and each cluster tends to be loose.
According to our experience, the value of w is within
[1, 3]. After the calculation of "tness for each string in the
population, the reproduction operator is implemented by
using a roulette wheel with slots sized according to "t-
ness. That is, R

i
is reproduced by the probability

SCORE(R
i
)/+N

i/1
SCORE(R

i
).

Crossover phase: In the crossover phase, for each
chosen pair of strings, two random numbers in [1, m] are
generated to decide which pieces of the strings are to be
interchanged. For example, suppose R

i
"101001020,

R
j
"110011020, and two random numbers chosen are

3 and 6, then position 3 to position 6 of two strings are
interchanged and "nal R

i
and R

j
are 100011020 and

111001020, respectively. For each chosen pair of
strings, the crossover operator is done with probability
p
c
, which is equal to 0.8 in our experiments.
Mutation phase: In the mutation phase, bits of the

strings in the population will be chosen with probabil-
ity p

m
, which is equal to 0.1 in our experiments.

Each chosen bit will be changed from 0 to 1 or from 1 to
0. For example, suppose R

i
"101001020 and the sec-

ond bit of R
i

is chosen to do the mutation, then
R

i
"111001020 after the mutation phase.
In each generation of this genetic algorithm, what

we really want is not the string with the best "tness
but a set of strings with better "tness. This set repres-
ents a good merging method for C

1
, C

2
,2, C

m
. By ap-

plying this good merging method to merge some of
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Table 1
Numbers of clusters and the maximum intra-distances of the "rst test set for di!erent values of u and w

u d components (N(w), D(w))
w"1 w"1.25 w"1.5 w"1.75 w"2 w"2.5 w"3

1.2 8 (8, 6.5) * (6, 8.4) (5, 8.8) (4, 12.9) (3, 29.1) (2, 31.2)
1.5 5 (5, 8.8) * (4, 12.9) (3, 29.1) (2, 31.2) * (2, 31.2)
2 5 (5, 8.8) * (4, 12.9) (3, 29.1) (2, 31.2) * (2, 31.2)

C
i
's, a good clustering will be obtained. The Algorithm

Merge}Sets}Finding consists of the following four steps
is used to "nd the sets of C

i
's that are to be merged. This

algorithm is executed after the calculation of "tness for
each string and before the application of the reproduc-
tion operator in the reproduction phase.

Step 1: Sort the "tness of the strings in non-increasing
order. For the sake of brevity, let us assume
SCORE(R

1
)*SCORE(R

2
*2*SCORE(R

N
).

i"1:;"~.

Step 2: Choose R
i
. Let <

i
"MC

j
D j3;

i
N. ;

i
"

MjDThe jth bit of R
i
is 1N as de"ned earlier in this section.

The clusters in <
i
are to be merged.

;";X;
i
.

Step 3: Choose smallest l'i such that ;
l
W;"~. If

no such l exists then go to Step 4 else i"l and go to Step
2.

Step 4: End.
An example to illustrate the Merge}Sets}Finding algo-

rithm is given as follows. Suppose SCORE(R
1
)*

SCORE(R
2
)*2*SCORE(R

N
), R

1
represents subset

MC
1
, C

2
, C

3
N, R

2
represents subset MC

3
, C

4
, C

6
N, R

3
rep-

resents subset MC
4
, C

5
N, and each of R

4
to R

N
represents

a subset containing at least one of C
1
, C

2
, C

3
, C

4
and C

5
,

then in this algorithm, by "rst choosing R
1
, clusters

C
1
, C

2
, C

3
are merged. Since the subset represented by

R
2
contains C

3
which is already in the subset represented

by R
1
, hence R

2
is discarded. After that, R

3
is considered,

the subset represented by R
3
contains no clusters that are

already merged. Hence the clusters C
4
, C

5
in this subset

are merged. Since each of R
4

to R
N

represents a subset
containing at least one cluster that is already merged,
they are all discarded.

The time complexity is analyzed as follows. In the "rst
stage, Step 1 takes O(n2) time to calculate the distances
between pairs of objects and takes O(n) time to "nd the
minimum. Step 2 takes O(n) time to calculate the min-
imum. Step 3 takes O(n2) time to derive the adjacency
matrix and Step 4 also takes O(n2) time to "nd the
connected components by scanning the adjacency
matrix. Therefore, the "rst stage spends O(n2) time. Be-
fore the second stage, we need to calculate D(i, j) for

all C
i
, C

j
, this takes O(n2) time in the worst case. The

time complexity of the second stage is dominated by the
calculation of D

*/53!
(R

i
) and D

*/5%3
(R

i
). It takes O(Nm2)

time in the worst case. Suppose the genetic algorithm is
asked to run k generations, then the time complexity
will be O(kNm2). Hence, the time complexity of the
whole clustering algorithm is O(n2#kNm2). In our ex-
periments, k equals 20 and N equals 50. In general, m is
also a small number. So these three numbers can almost
be taken as constants and the time complexity is then
O(n2).

4. Experiments

Three sets of data are used to test the e!ectiveness of
the clustering algorithm. Fig. 1(a) shows the original test
data. There are some noises in the test data. By calculat-
ing the average of the nearest neighbor distances d

av
, if an

object has a distance 2d
av

from its nearest neighbor, this
object is taken as a noise and is discarded. Fig. 1(b) shows
the test data with noises removed. As mentioned before,
u is chosen to be 1.5 by experience. In our experiments on
the "rst and the second sets of data, two other values of u,
namely 1.2 and 2, are also used to illustrate that with
a suitable choice of the value of w, a good clustering can
be found with all three values of u. This means that u may
be chosen from an interval, e.g. [1.2, 2], and the exact
value of u is not crucial to the clustering result. In
Table 1, if u is 1.2, there are eight initial clusters, which
are shown in Fig. 1(c). If u is 1.5 or 2, there are "ve initial
clusters, which are shown in Fig. 1(f). As shown in
Table 1, several values of w are chosen from [1, 3]. For
each value of w, the number of clusters and the maximum
intra-distance are recorded. For example, if u is 1.2 and
w is 2, there are four clusters as shown in Fig. 1(g) and the
maximum intra-distance is 12.9. The values of w are
chosen from [1, 3] by binary search. The numbers in
circles in Table 1 indicate the sequence of chosen values
of w. A good clustering can be found by conducting this
binary search. The criteria of selecting the good cluster-
ing are as follows. Find the smallest w such that
N(w)"N(w@)#1 and D(w@)/D(w)*2, where w@ is next to
w and larger than w. Then the clustering obtained by
using this w is the good clustering. If there is no such case,
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Table 2
Numbers of clusters and the maximum intra-distances of the second test set for di!erent values of u and w

u d components (N(w), D(w))
w"1 w"1.5 w"2 w"2.5 w"3

1.2 76 (76, 6.9) (3, 9.5) (2, 19.5) * (2, 19.5)
1.5 4 (4, 8.9) (3, 9.5) (2, 19.5) * (2, 19.5)
2 3 (3, 9.5) * * * (2, 19.5)

we "nd all w in [1, 3] such that N(w)"N(w@)#1 and
D(w@)/D(w)*1.5. All clustering corresponding to these
w's are output. If there are still no such cases, the clus-
tering obtained by choosing 3 as the value of w is out-
put. Fig. 1(c)}(i) show clustering with di!erent number
of clusters. In the "rst test data, the good clustering
has four clusters as shown in Fig. 1(g). If we apply only
the nearest neighbor clustering method (with u"2),
we obtain a clustering with "ve clusters as shown in
Fig. 1(f), which is not very proper. If we apply only
the genetic algorithm (i.e. the second stage of our clus-
tering algorithm) directly to the test data, four clus-
ters are obtained as shown in Fig. 1(j). The clustering
is also not good. By applying the K-means algorithm
with number of clusters equals to four, the clustering
is shown in Fig. 1(k). This clustering result is bad
because the K-means algorithm is not suitable for
non-spherical-shape clusters. Fig. 2 and Table 2 show
the second test data and its clustering results. A good
clustering is the case of three clusters shown in Fig. 2(c).
Fig. 3 shows the third set of test data and its clustering
result.

5. Concluding remarks

A genetic clustering algorithm CLUSTERING is pro-
posed. CLUSTERING is a clustering algorithm for data
whose clusters may not be of spherical shape. Unlike the
K-means algorithm which needs the user to provide it
with the number of clusters, CLUSTERING can auto-
matically search for a proper number as the number of
clusters. By binary searching some proper interval for the
value of w, a proper number of clusters and a good
clustering can be found. In general, a natural and steady
clustering will correspond to a signi"cantly long interval
of w values. The traditional neighborhood clustering
algorithm usually needs the user to provide a distance
d for the clustering. But a unique d for a set of objects
often causes problems because there may be some natu-
ral clusters in which the objects are not close to one
another within the distance d. CLUSTERING avoids
this kind of problem by processing the data in a global
view.

6. Summary

The clustering problem is a very important problem
and has attracted much attention of many researchers.
Some traditional methods, for example, the K-means
algorithm and its variants, usually ask the user to provide
the number of clusters. Unfortunately, the number of
clusters in general is unknown to the user. Hence, the
user usually has to try several times in order to get a good
clustering. The traditional neighborhood clustering algo-
rithm usually needs the user to provide a distance d for
the clustering. This d is di$cult to decide because some
clusters may be compact but others may be loose. In this
paper, a genetic clustering algorithm CLUSTERING is
proposed. CLUSTERING is a clustering algorithm for
data whose clusters may not be of spherical shape. Un-
like the K-means algorithm, CLUSTERING can auto-
matically search for a proper number as the number of
clusters. By binary searching some proper interval for the
value of w, which is the weighting factor between the
inter-distance and the intra-distance of the clusters,
a proper number of clusters and a good clustering can be
found. Several experiments are conducted to illustrate
the e!ectiveness of the genetic clustering algorithm.
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