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Abstract: Fuzzy time-series models have been utilized in making reasonably accurate predictions 

in many areas, such as academic enrollments, weather forecasting and stock markets. To refine past 

fuzzy time-series models, this paper proposes a new model, which employs the concepts of 

“momentum” along with Chebyshev’s theorem in the forecasting process. The proposed model 

applies a “momentum” index to generate forecasting rules (fuzzy logical relationships) to reduce the 

probability of rules not being found in cases where no rules are available to forecast a testing 

dataset. Chebyshev’s theorem is adopted to define a “reasonable” universe of discourse for the 

observations in a training dataset. From the refined process, two types of universe, symmetrical and 

asymmetrical, are given.  To verify the proposed model, this paper employs experimental datasets, 

derived from a seven-year period of the Taiwan Stock Exchange Capitalization Weighted Stock 

Index (TAIEX). Model comparison results show that the proposed model surpasses in accuracy one 

traditional fuzzy time-series model and two advanced models, based on neural networks and rough 

set algorithms. 
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1. Introduction  

With the emergence of data mining techniques, more and more artificial intelligence (AI) 
algorithms, such as fuzzy theory (Zadeh, 1975a;Zadeh, 1975b;Zadeh, 1976;Zimmermann, 1991), 
genetic algorithms (Bauer, 1994), and neural networks (Gately, 1996;Refenes et al., 1997;Trippi and 
Turban, 1993;Azo, 1994) have been applied to forecast complex systems, such as stock markets. In 
recent decades, many fuzzy time-series models, which utilize the fuzzy theory to model the 
relationships between the observations in time series, have been advanced to solve various 
forecasting problems, such as university enrollment forecasting (Song and Chissom, 1994;Song and 
Chissom, 1993b;Chen, 2002;Chen and Hsu, 2004;Chen and Chung, 2006;Chen, 1996;Song and 
Chissom, 1993a), weather prediction (Chen, 2000), and stock market forecasting (Huarng and Yu, 
2006b;Huarng, 2001b;Huarng and Yu, 2005;Huarng and Yu, 2003;Yu, 2005a;Chen et al., 2008;Chen 
et al., 2007;Cheng et al., 2006;Su et al., 2010;Teoh et al., 2008;Cheng et al., 2010;Teoh et al., 
2009;Huarng and Yu, 2006a;Yu and Huarng, 2008). For academic researchers, stock price 
forecasting is a very popular topic and, therefore, fuzzy time-series research usually employs stock 
market prices as prediction targets. 

After reviewing the literature, two types of fuzzy time-series models can be summarized: (1) 
the traditional model, based on fuzzy theory (Huarng, 2001b;Huarng, 2001a;Huarng and Yu, 
2005;Huarng and Yu, 2003;Teoh, et al., 2009;Yu, 2005a;Yu, 2005b;Chen et al., 2008;Chen et al., 
2007;Chen, 2002;Chen and Hsu, 2004;Chen, 1996); and (2) the advanced model, based on fuzzy 
theory and other AI algorithms, such as genetic algorithms (Chen and Chung, 2006), neural 
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networks (Huarng and Yu, 2006b), and rough set algorithms (Teoh et al., 2009;Teoh et al., 2008;Su 
et al., 2010). Upon examining these models, we note that two issues, which may be critical points 
for forecasting performance, have rarely been discussed: (1) a “reasonable” universe of discourse 
for the observations in the training dataset; and (2) a probability reduction where “no rules”(fuzzy 
logical relationships) are available to forecast the testing dataset. To ascertain whether these 
problems effect forecasting performance for fuzzy time-series models, this paper proposes two 
approaches, “momentum” and Chebyshev’s theorem, in order to refine the forecasting process. 

To verify the proposed model, experimental datasets were selected from a 7-year period of the 
TAIEX. Further, four fuzzy time-series models, Chen’s (1996), Huarng et al.’s (2005), Huarng et 
al.’s (2006) and Su et al.’s (2010) models, are used as comparison models to examine the 
forecasting improvement of the refined process. The remaining content of this paper is organized as 
follows: Section 2 introduces the definitions of a fuzzy time-series model; Section 3 offers the 
proposed concepts and algorithm; Section 4 submits model verification; Section 5 notes findings 
and suggests discussions; and the last section provides a conclusion. 

2. Fuzzy Time-series Model 

The fuzzy time-series, originally advanced by Song and Chissom (1993a; 1993b; 1994), is a 
data mining technique, which applies the fuzzy theory (Zadeh, 1975b;Zadeh, 1975a;Zadeh, 1976) to 
model fuzzy relationships among time-series observations. In the area of fuzzy time-series, 
numerous models have been proposed. Chen (1996) proposed another method to apply simplified 
arithmetic operations in forecasting algorithms rather than the complicated max-min composition 
operations presented in Song and Chissom’s model. In his subsequent research, Chen proposed 
several methods (Chen, 2000;Chen, 2002;Chen and Hsu, 2004;Chen and Chung, 2006;Chen, 1996), 
such as high-order fuzzy relationships and genetic algorithms (Chen and Chung, 2006) to improve 
his initial model. Additionally, Huarng (2001a) pointed out that the length of intervals affected the 
forecasting accuracy in fuzzy time-series and proposed a method with a distribution-based length 
and an average-based length to reconcile this issue. In Huarng’s model, two different lengths of 
intervals were applied to Chen’s model, and it was concluded that the distribution-based and the 
average-based lengths could improve forecasting accuracy. Although this method demonstrates 
excellence in forecasting, we argue that it creates too many linguistic values to be identified by 
analysts, since, according to Miller(1956), establishing linguistic values and dividing intervals 
would be a trade off between human recognition and forecasting accuracy (Miller, 1956). Besides, 
Yu (2004) proposed a weighted model to tackle the two issues of recurrence and weighting in fuzzy 
time-series forecasting and concluded that the weighted model outperforms one of the conventional 
fuzzy time-series models (Yu, 2005a). The researcher argued that recurrent fuzzy relationships 
should be considered in forecasting, and he recommended that different weights be assigned to 
various fuzzy relationships.  

In recent research, AI algorithms, such as genetic algorithms (Bauer, 1994), neural networks 
(Trippi and Turban, 1993) and rough set algorithms (Pawlak and Skoworn, 2007;Pawlak, 1982) 
were usually applied and efficiently improved the forecasting accuracy of fuzzy time-series models. 
Huarng and Yu (2006) applied neural networks to extract fuzzy logical relationships from fuzzy 
time-series to forecast the TAIEX (Huarng and Yu, 2006b) and their model outperformed Chen’s 
(1996) model. Chen and Chung (2006) employed genetic algorithms to adjust the length of each 
interval in the universe of discourse (Chen and Chung, 2006). Teoh et al. (2009) adopted rough set 
algorithms to mine fuzzy logical relationships to enhance performance (Teoh et al., 2009;Teoh et al., 
2008) and Su et al. (2010) used the algorithms to deal with technical indicators to produce 
forecasting rules for stock markets (Su et al., 2010). Although many types of fuzzy time-series 
models have been proposed to improve forecasting performance, the author believes that there are 
other reasonable approaches, such as stock analysis theory or techniques which can refine fuzzy 
time-series, to enhance forecasting accuracy whenever the forecasted targets are financial.  
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A fuzzy time-series can be defined as follows (Huarng and Yu, 2005;Song and Chissom, 
1993a;Song and Chissom, 1994;Song and Chissom, 1993b;Yu, 2005b): 

Definition 1: Let Y(t)(t = . . . , 0, 1, 2, . . .T), a subset of real numbers, be the universe of discourse 
by which fuzzy sets f i(t) are defined. If F(t) is a collection of f1(t), f2(t),…, F(t) is called a fuzzy 
time-series defined by Y(t). 

Definition 2: Suppose F(t) is caused by F(t-1)  only. The relationship is expressed as F(t) = 40 F(t-1) 
*R(t,t-1); where R(t,t-1) is the fuzzy relationship between F(t) and F(t-1); * represents an operator. 

Let F(t) = Ai and F(t-1) = Aj . The relationship between F(t) and F(t-1) (referred to as a fuzzy 
logical relationship, FLR(Song and Chissom, 1993a)) can be denoted by Ai → Aj ; where Ai is called 
the left-hand side (LHS) and Aj the right-hand side (RHS) of the FLR. 

Definition 3: Given two FLR s with the same fuzzy sets on the LHSs, Ai → Aj1; Ai → Aj2. Both 
FLRs can be grouped together into fuzzy logical relationship groups (Chen, 1996): Ai → Aj1, Aj2. 

In general, a fuzzy time-series model includes the following forecasting processes (Yu, 2005b): 
(1) define the universe of discourse and the intervals for the observations; (2) partition the universe 
based on the intervals; (3) define the fuzzy sets for the observations; (4) fuzzify the observations; (5) 
establish the fuzzy relationship; (6) perform the forecast; and (7) defuzzify the forecasting results. 

3. Momentum-based Fuzzy Time-series 

After reviewing the literature of fuzzy time-series, there are two important issues, regarding the 
data spread, which are worth further discussion: (1) how to determine a reasonable universe of 
discourse for the stock price in the training datasets; and (2) how to provide an approach which 
avoids the condition of missing rules (fuzzy logical relationships) when the stock prices in a testing 
dataset are out of the defined boundary of its corresponding training dataset.  

Firstly, the researcher defines the universe of discourse for the fuzzy time-series model training 
datasets subjectively (Yu, 2005a;Yu, 2005b;Chen et al., 2008;Chen et al., 2007;Chen, 2002;Chen 
and Hsu, 2004;Chen, 1996). These models set the boundaries for the universe of discourse with two 
unfixed and subjective numbers (see equation (1), where Dmin is the minimum and Dmax is the 
maximumin a training dataset; D1 is a positive value given by the researcher) on the condition that 
the boundaries can cover the data distribution in the training sets. This is a less persuasive approach 
without any theory to support the process. 

 1max1min , DDDDU   (1) 

From Chebyshev’s theorem (defined in equation (2), where x is a random variable; u is the 
mean of the random value x; k is a constant value; σis the variance of the random value x) (Douglas 
et al., 2004), the probability of any random variable within a certain boundary can be determined. 
Therefore, to define the universe of discourse for training datasets with confirmable confidence, I 
argue that this theorem is a proper approach to refine the process of the traditional models in 
boundary defining. 

k
kuxkuP

1
1)(    (2) 

By applying the Chebyshev’s theorem, two types of universes (U), asymmetrical and 
symmetrical, are provided to determine a reasonable universe of discourse for observations with a 
probability that is confirmable. The boundaries of the asymmetrical U are defined in equations (3) 
and (4). They are determined by two different adjustable parameters (k1 and k2), based on the 
maximum (Dmax) and minimum (Dmin) in a training dataset.  

min1 * Dsku   (3) 
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max2 * Dsku   (4) 

where u is the mean, s is the standard deviation, k1 is an adjustable parameter to mark the low 
boundary (u-k1* s) close to the minimum observation, k2 is an adjustable parameter to mark the high 
boundary (u+k2* s) close to the maximum observation. 

However, the boundaries of the symmetrical U are determined by only one adjustable 
parameter (k0), based on the maximum and minimum in the training dataset, and they are defined in 
equations (5) and (6). 

min0 * Dsku   (5) 

max0 * Dsku   (6) 

where k0 is an adjustable parameter, which marks the lower boundary (u-k0* s), and the high 
boundary (u+k0* s) close to the minimum and maximum. 

Secondly, the experimental dataset used to verify fuzzy time-series is usually split into two sub-
datasets, training and testing, with a specific ratio. In the forecasting process, problems sometimes 
occur when the observation in the testing dataset falls out of the boundaries defined by its 
corresponding training dataset. Whenever no rules are available for forecasting the testing dataset, a 
“naïve” forecast (denotes the use of the present observation as a forecast for the future) is employed 
to solve the problem (Chen, 2002;Chen and Hsu, 2004;Chen, 1996). However, when a stock market 
is in a full bear or full bull trend, there are no rules for forecasting the testing dataset and the naïve 
forecast completely replaces the predictions from the forecasting model, rendering the research 
model ineffective.  

In the 2000 TAIEX, for example (see Figure 1), when the splitting ratio for the experimental 
dataset is set as 10:2 (a ten-month period of the stock index is selected for training, and the 
remainder for testing), many “naïve forecasts” are used because some observations in the testing 
dataset (ranged from 6090 to 4615) are much lower than the low boundary (5081) of the training 
dataset. 

 

Figure 1  Index of the 2000 TAIEX 

To overcome this problem, we introduce a momentum index. Stock price momentum is one of 
the technical indicators (Yamawaki and Tokuoka, 2007; Kim et al., 2006) used to measure price 
changes over a period of time. It is defined as equation (7), where m(t) is the stock price momentum, 
P(t), within a period of time, τ , which may vary by hours, days, months, etc., depending on the time 
length of the analysis (Wang H. and Pandey R.B., 2004). 
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)()()( tPtPtm    (7) 

There are two reasons why this index is used: (1) daily price fluctuation limitations are 
sometimes imposed by governmental regulatory agencies, as the 7% limitation on the TAIEX; and 
(2) the volatility of the momentum is much smaller than the stock index in scale. Both can reduce 
the probability of the condition where no rules are available for forecasting a testing period. Taking 
a one-day momentum from the 2000 TAIEX as an example (see Figure 2), the observations in the 
testing dataset (from January to October) range from 274 to -323, and all of them are spread within 
the boundaries (-618,469) defined by the training dataset (from November to December). 

 

Figure 2  Momentums for the 2000 TAIEX 

Based on these two refinements, a new fuzzy time-series model is proposed to improve 
forecasting performance. The proposed algorithm is introduced in the following section. 

In this subsection, the proposed algorithm is introduced, step by step, using the 2000 TAIEX 
(see Figure 1 and Figure 2) as an example.  

Step 1: Transfer stock index into momentum index 

In the first step, the experimental dataset of the stock index is transferred into a dataset of a 
momentum index. The proposed algorithm refines equation (7) as equation (8) to produce a 
momentum index as a forecasting factor because equation (7) includes the unknown information, 
P(t+τ), which denotes the future stock index within a period of time τ  ( τ is set as “1” in this paper).   

)()()(  tPtPtm  (8) 

Step 2: Reasonably define the universe of discourse for the observations 

In this step, equations (3) to (5) are employed to define two types of the universe of 
discourse: asymmetrical U and symmetrical U. The high and low boundaries of symmetrical U and 
asymmetrical U are given by equation (9) and equation (10), respectively. 

]*,*[ Ulsymmetrica 00 skusku    (9) 

]*,*[ Ualasymmetric 21 skusku    (10) 

For example, the high and low boundaries of asymmetrical U and symmetrical U for the 

training dataset, employing the 2000 TAIEX (from January to October), are listed in Table 1. The 

mean (u) for the observations is -14.41, standard deviation(s) is 163.19, the minimum and 

maximum is -618 and 469, k0 is 3.7, k1 is 3.7, and  k2 is 3. 
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Table 1  The high and low boundaries of asymmetrical U and symmetrical U 

Defined U                     
Year 

(Mean) 

2000 

(-14.41) 

Symmetrical U  [u - k0*s, u + k0*s]  [ -618,589] 

Asymmetrical U  [u - k1*s, u + k2*s]  [ -618,475] 

Step 3: Partition the universe, based on the intervals 

This step partitions the defined universe from  Step 2 into a certain number of 
intervals for observations in the training datasets. The  proposed algorithm uses seven 
intervals to partition the defined universe, as listed in Table 2. 

Table 2  Seven partitioning intervals for observations 

Symmetrical U Asymmetrical U 

Intervals  Range Intervals  Range 

I1 [-618, -446] I1 [-618,-462] 

I2 [-446, -273] I2 [-462,-306] 

I3 [-273, -101] I3 [-306, -150] 

I4 [-101, 72] I4 [-150, 7] 

I5 [72, 244] I5 [7, 163] 

I6 [244, 417] I6 [163, 319] 

I7 [417, 589] I7 [319, 475] 

Step 4: Define the fuzzy sets for the observations  

This step establishes a related fuzzy set (linguistic value) for each observation in the training 
dataset. The fuzzy sets, A1 A2… Ak,, for the universe of discourse are defined by equation (11).  

mkmkkk
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mm
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
 (11) 

For example, in this paper, the seven fuzzy linguistic values A1 = (very low momentum), A2 
= (low momentum), A3 = (slightly low momentum), A4 = (zero momentum), A5 = (slightly high 
momentum), A6 = (high momentum) and A7 = (very high momentum) are refined by equation (12) 
(Chen, 1996). 
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Step 5: Fuzzify the observations 

In equation (12), the value of aij indicates the grade of membership of uj in fuzzy set Ai, 
where ]1,0[ija , 1≤ i ≤ k and 1 ≤ j ≤ m; and ascertains the degree of each stock price belonging to 
each Ai (i=1,…,m). If the maximum membership of the stock price is under Ak, then the fuzzified 
stock price is labeled as Ak. Each observation in the training dataset can be classified by the seven 
partitioned intervals and labeled with a specific linguistic value based on equation (11). Table 3 
demonstrates the assignments of linguistic value with symmetrical U for eight periods of 
momentum indices, based on the classifications from equation (12).  

Table 3  Assign a related linguistic value to each momentum index (Symmetrical U) 

Date 
Time 

sequence 
Stock index 

Momentum 

index 

Linguistic 

value 

01/04/2000 t = 0 8,756.55   

01/05/2000 t = 1 8,849.87 93.32 A5 

01/06/2000 t = 2 8,922.03 72.16 A5 

01/07/2000 t = 3 8,845.47 -76.56 A4 

01/10/2000 t = 4 9,102.60 257.13 A6 

01/11/2000 t = 5 8,927.03 -175.57 A3 

01/12/2000 t = 6 9,144.65 217.62 A5 

01/13/2000 t = 7 9,107.19 -37.46 A4 

01/14/2000 t = 8 9,023.24 -83.95 A4 

Step 6: Establish the fuzzy relationship 

In this step, there are three procedures: (1) establish a fuzzy logic relationship (FLR) for 
linguistic time-series; (2) summarize all fuzzy logic relationships as FLR groups to produce a rule 
matrix; and (3) assign a weight to each FLR group.  Firstly, one FLR (Fuzzy Logical Relationship) 
is composed of two consecutive linguistic values. For example, the FLR Ai → Aj is established by Ai 
( t-1 ) and Aj (t ). Table 4 demonstrates the FLR, establishing processes of the linguistic time-series 
from Table 3.  

Secondly, the FLRs with the same LHS (Left Hand Side) linguistic value can be grouped into 
one FLR group such as Ai → Aj1, Aj2. All FLR groups will construct a rule matrix. Table 5 
demonstrates the matrix produced by the FLRs from Table 4. Each row of the matrix represents one 
FLR group and each cell represents the occurrence frequency of each FLR. 

Thirdly, each FLR within the same FLR group should be assigned a weight. In the proposed 
algorithm, the trend-weighted method is applied (Cheng, Chen, and Chiang, 2006). For example, in 
Table 5, the FLR group of A5 is A5 →A4, A5. The FLR of A5 → A5 occurs once and the weight is 
assigned 1. However, The FLR of A5 → A4 occurs twice. Therefore, the first FLR is assigned 1 and 
the second FLR is assigned 2. In this method, the FLR weight is determined by the order of 
occurrence. The sum of the weight of each FLR should be standardized to obtain a trend-weighted 
rule matrix, defined as Wn(t) (see Equation (13)).  

Table 5  Example of a rule matrix from FLRs 

 Table 4  FLR Table                        m(t+1) 

m(t) 
A1 A2 A3 A4 A5 A6 A7 

A1 0 0 0 0 0 0 0 
A2 0 0 0 0 0 0 0 
A3 0 0 0 0 1 0 0 
A4 0 0 0 1 0 1 0 
A5 0 0 0 2 1 0 0 
A6 0 0 1 0 0 0 0 
A7 0 0 0 0 0 0 0 

A5(t = 1) → A5(t = 2) 

A5(t = 2) → A4(t = 3) 

A4(t = 3) → A6(t = 4) 

A6(t = 4) → A3(t = 5) 

A3(t = 5) → A5(t = 6) 

A5(t = 6) → A4(t = 7) 

A4(t = 7) → A4(t = 8) 
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For example, the standardized weights for A5 in Table 5 are specified as follows: W1 =0, W2 = 0, 
W3 = 0, W4 = 3/4, W5 = 1/4, W6 = 0 and W7 = 0. For example, Table 6 demonstrates the trend-
weighted rule matrix converted from Table 5 above.  

Table 6  Example of trend-weighted rule matrix 

m(t+1) 

m(t) 
A1 A2 A3 A4 A5 A6 A7 



i

k
k

W
1

 

A1 0 0 0 0 0 0 0 0 

A2 0 0 0 0 0 0 0 0 

A3 0 0 0 0 1 0 0 1 

A4 0 0 0 1/2 0 1/2 0 2 

A5 0 0 0 3/4 1/4 0 0 4 

A6 0 0 1 0 0 0 0 1 

A7 0 0 0 0 0 0 0 0 

Step 7: Perform the forecast  

With the rule matrix from Step 6, the forecasts for the testing dataset can be generated by the 
following statement: suppose m(t) = Ai . The forecast of m(t+1) is produced by the following rules: 

(1) if Ai is not found in the FLR groups (the rule matrix from Step 6), the forecast of m(t+1) is 
equal to m(t). 

(2) if Ai = the LHS (Left Hand Side) of a FLR group, such as Ai → Aj1, Aj2,…, Ajk, the forecast of 
m(t+1) is W1*Aj1,+W2* Aj2,…, +Wk*Ajk. 

Step 8: Defuzzify the forecasting results  

In this step, the linguistic forecast from Step 7 is converted to a numerical forecast, which is 
called “defuzzification” as in the following statement: if the forecast of m(t+1) is W1*Aj1,+W2* 
Aj2,…, +Wk*Ajk , the defuzzified forecasting result is equal to a trend-weighted arithmetic average of 
the midpoints for Aj1, Aj2,…, Aj (Chen, 1996) and defined by equation (14). 

)MP(A*W ,),A MP(*W)MP(A*W)1(_ jkkj22j11 tmforecast  (14) 

Step 9: Transfer the momentum index to the stock index  

The defuzzified forecasting result from Step 8 is a momentum index and has to be converted 
to a stock index. This step employs equation (15) to produce a forecast of the stock index for the 
next day. 

)1(_)()1(_  tmforecasttPtPforecast
 (15) 

  

4.  Model Verification 

 In this section, a seven-year period of the TAIEX, from 1999/1/4 to 2005/12/31, is used to 

create experimental datasets (the first ten-month period of each year, from January through October, 

is used for training and the last two, November and December, for testing), and to evaluate 

forecasting performance, the RMSE (Root Mean Square Error, defined in equation (16) on the next 

page) is employed as a performance indicator.  
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4.1 Performance Evaluation 

Since the data spread is a key issue for the proposed model, the statistics of the observations are 
the referenced factors to define the universe of discourse, U, for the stock price in the training 
datasets. Table 7 lists the statistics for the training periods from 1999 to 2003. By applying 
Chebyshev’s theorem, the asymmetrically and symmetrically defined universes, which evaluate the 
forecasting performance with confirmable confidence of probability, are provided. Table 7 shows 
the forecasting performance for testing periods with two types of defined universes. It is clear that 
the types of boundaries vary the performance under the same forecasting processes. 

4.2 Model Comparison 

To verify the forecasting performance of the proposed model, several time-series models with 
one forecasting factor (stock index) are employed as comparison models. Using the performance 
data from Huarng et al.’s (2005; 2006b), Yu et al.’s (2008) and Su et al.’s (2010) research, a 
performance comparison table is produced and listed in Table 9. It is apparent that the proposed 
model with two types of defined U bears the smallest RMSE for every testing period.  

 Table 7  Statistics of momentum for training periods  

Note: “*” is defined by the equation:  meanimummeanimum  maxmin
 

Table 8  Forecasting performance for testing periods with two types of defined U 

Note: * indicates smaller RMSE. 

 

Year 

Statistics 
1999 2000 2001 2002 2003 2004 2005 

Mean 7.74 -14.41 -5.16 -5.00 7.42 -1.65 -1.88 
Standard 
deviation 

118 163 91 96 69 96 48 

Variance 13839 26632 8342 9141 4759 9220 2336 
Kurtosis 2.29 0.83 0.05 0.29 0.43 3.76 0.89 
Skewness -0.07 0.04 0.31 0.14 0.05 -0.57 -0.16 
Range 926.42 1086.08 507.72 559.47 401.08 796.66 304.54 
Minimum -506.46 -617.65 -224.44 -284.22 -189.99 -455.17 -173.21 
Maximum 419.96 468.43 283.28 275.25 211.09 341.49 131.33 

* Difference of 
spread distance 

from Mean 
101.98 120.4 69.16 1.03 6.26 110.38 38.12 

Year 

(Mean) 

 

Defined U 

1999 

(7.74 ) 

2000 

(-14.41) 

2001 

(-5.16) 

2002 

(-5.00) 

2003 

(7.42) 

2004 

(-1.65) 

2005 

(-1.88) 

Sym. U 

 [u + k0*s, 
u – k0*s] 

[ -508,523] [ -618,589] [ -297,287] [ -286,276] [ -197,212] [ -456,453] [-173,170] 

RMSE *103 130 *120 *68 *55 56* 54 

Asym. U 

 [u + k1*s, 
u – k2*s] 

[ -510,431] [ -618,475] [ -233,287] [ -285,276] [ -191,212] [-456,342] [-173,132] 

RMSE 109 *122 125 *68 58 58 53* 
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Table 9  Probability that observation falling into defined U based on Chebyshev’s theorem 

 

Table 10  Performance comparisons for testing periods (TAIEX) 

 

Models       Year 

 

1999 2000 2001 2002 2003 2004 2005 

**Conventional 

regression model 
164 420 1070 116 329 146 -- 

Chen's model  

(1996) 
120 176 148 101 74 83 66 

Huarng et al.’s  model 

(2005) 
-- 139 144 82 73 -- -- 

Huarng et al.’s  model 

(2006b) 
109 152 130 84 56 79 69 

Su et al.’s model 

(2010) 
-- -- 122 94 55 69 65 

Proposed  
(Sym. U) *103 130 *120 *68 *55 *56 54 

(Asym. U) 109 *122 125 *68 58 58 *53 

Note: “*” denotes minimum RMSE; “--”denotes no datum; 

      “**” the performance data are referred from Yu et al. (2008).  

4.3 Findings and Discussions 

After implementing the experiment, several findings were discovered from the experimental 
data which are summarized in Tables 7 through Table 10 and introduced below.  

Firstly, the larger the variance of the stock market leads, the poorer the forecasting performance. 
Table 8 shows that the RMSE of the proposed model from 1999 to 2001 (Sym. U: 103,130,120; 
Asym. U: 109,122,125) is worse than that for the period from 2002 to 2005 (Sym. U: 68,55,56,54; 
Asym. U: 68,58,58,53). From Table 7, the standard deviation of the observations (momentum index) 
from 1999 to 2001(118,163,91) is almost larger than that for the period from 2002 to 2005 
(96,69,96,48). Although there is one exception in 2001, the relation between the variance and the 
forecasting performance is still obvious. 

Secondly, the spread characteristics of observations influence the forecasting performance of 
fuzzy time-series. From Table 8, it is apparent that the RMSE for the two types of defined U (Sym. 
U and Asym. U) is different, except for the year 2002 (where Sym. U is close to Asym. U). Because 
the two types of defined U are given according to the spread characteristics of observations, it is 
believed that forecasting performance of fuzzy time-series is related to observation spread. Besides, 
the RMSE performs better employing an Asym. U when the observations spread into extreme 

Year 

(Mean) 

 

Defined U 

1999 

(7.74 ) 

2000 

(-14.41) 

2001 

(-5.16) 

2002 

(-5.00) 

2003 

(7.42) 

2004 

(-1.65) 

2005 

(-1.88) 

Sym. U 

 [ k0] [4.38] [ 3.7] [ 3.2] [ 2.94] [2.96] [4.73] [3.55] 

Prob.  94.79% 92.70% 90.23% 88.43% 88.59% 95.53% 92.07% 

Asym. U 

 [k1,  k2] [ 4.38,3.51] [ 3.7,3.0] [ 2.5,3.2] [2.93,2.94] [ 2.87,2.96] [4.73,3.58] [3.55,2.76] 

Prob.  93.34% 90.79% 87.12% 88.39% 88.22% 93.86% 89.47% 
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asymmetry. The phenomenon is shown in the TAIEX for year 2000 (the difference of the spread 
distance from Mean is 120, which is the largest among the 7 experimental datasets, and the RMSE 
for an Asym. U is much better than for a Sym. U). 

Thirdly, the probability that the observations in the testing dataset fall into the two types of 
defined U can boost the confidence level in fuzzy time-series models, defining the universe for 
observations. Based on Chebyshev’s theorem, the least probable of the two types of U can be 
produced and listed in Table 9. This can provide useful information for researchers to decide 
whether the universe for the fuzzy time-series model should be modified or not (increased or 
decreased) to reach its maximum forecasting performance. 

Lastly, the momentum index is a better forecasting factor than the stock index for fuzzy time-
series. The comparison results of Table 10 show that the proposed model, based on a momentum 
index, performs better than the four fuzzy time-series models (Chen, S.M., 1996; Huarng et al., 
2005; Huarng et al., 2006b; Su et al., 2010) and a regression model, all of which are based on a 
daily stock index. The reason that the momentum index is a better forecasting factor can be 
explained by its ability to reduce the variability of a forecasting factor for the stock market, and 
provide more meaningful information for stock investor than daily stock indices. 

5. Conclusions and Further Works 

In this paper, a new fuzzy time-series, which employs a momentum index and Chebyshev’s 
theorem to define a universe, has been proposed in order to improve forecasting accuracy. From the 
verification results, it is concluded that the major research goal has been reached. Additionally, two 
important findings have been discovered: (1) a larger variance of the stock market leads to poorer 
forecasting performance; and (2) the spread characteristics of observations influence the forecasting 
performance of fuzzy time-series. Besides the conclusion, the proposed model can provide a 
practical application in investment decisions. Investors can make their decisions, buying or selling 
stocks, based on the forecasting momentum index for the next day. For example, if the forecasting 
index is positive, investors should buy the stock index at the opening price and sell it at the closing 
price to make a profit; conversely, they should sell the index at the opening price and buy it back 
when the forecast is negative. 

However, there is still room for testing and improving this model, as follows, e.g.: (1) 
employing other stock markets as testing datasets to evaluate the performance; (2) simulating the 
model to trade in the stock market, and sum up the profits of these trades to evaluate profit making; 
and (3) reconsidering the factors affecting the behaviour of the stock markets, such as trading 
volume, news and financial reports. 
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